

4-1 313-CD-006-002

4. Interface Scenarios and Scenario Primitives

4.1 Interface Scenarios

4.1.1 Introduction

This section outlines a series of eleven system level scenarios. The first three scenarios were
generated during Release A and have been modified to reflect upgrades in Release B. The next
eight scenarios have been added in support of Release B exclusively in which the last three
scenarios have been added to demonstrate the FOS/SDPS interoperability. The purpose of these
scenarios is to validate the class category interfaces (a CSCI consists of one or more class
categories). These scenarios illustrate the major interactions between class categories and verify
that CSCIs are correct. The scenarios contained herein are different than those found in the DID
305 subsystem documents, as they focus on the interfaces between class categories and not the
internal workings of class categories.

4.1.2 Approach

For each scenario, the scenario’s purpose is stated, the preconditions required for a particular
scenario, and define the start and end points. A detailed step-by-step description of the scenario
follows each overview. The detailed scenario description is further supported by a table outlining
each step in the scenario. In general, a major step in a scenario corresponds to a scenario primitive.
In such cases, the scenario description table contains a reference to the scenario primitive. Finally,
the scenario primitives are detailed in the form of an event trace diagram.

These interface scenarios represent the most common threads of operation performed by ECS.

4.1.3 Scenarios Overview

The eleven scenarios exercise a broad range of CSCI interfaces included in the ECS Release B
system and validate the key architectural interfaces.

The scenarios covered in this section are:

1.

General Data Ingest – Demonstrating the steps required for the ingestion of data, L0 and
higher, from an external facility and the Ingest CSCI interfaces.

2. User Access – Demonstrating the search, browse, and acquire product mechanisms.

3. Standard Production – Demonstrating the nominal Release A data production strategy with
enhancements for Release B.

4. Cross-DAAC Search - Demonstrating search capability across multiple DAAC sites.

5. On-Demand Processing - Demonstrating the request for data processing on-demand.

7. Data Acquisition Request (DAR) Processing - Demonstrating the capability to request
instrument data acquisition, and subsequent generation of higher level products.

8. Billing and Accounting Scenario - Demonstrating the capability to update accounting
information when a product is shipped and when a product’s price changes.

4-2 313-CD-006-002

9. FOS/SDPS Interaction Scenario - three scenarios demonstrating the interoperability of
FOS and SDPS to submit, query, and acquire data.

10. FOS Data Advertisement Scenario - use of advertisement service to advertise data
availability schedules

11. FOS-INGEST Interaction Scenario - use of the Ingest CSCI to put FOS data into Science
Data Server.

4.1.4 Scenario Description Tables

The tables in the following sections are divided into six columns containing the following
information:

Column 1: Step Number

This is the sequence number of the step in the scenario.

Column 2: EName

A short name to identify the event described by the scenario step.

Column 3. Primitive Reference

A reference to the scenario primitive(s) in Section 4.2. For each scenario primitive, an event trace
diagram is provided which identifies the objects and exact sequence of operations used on those
objects to implement the scenario step. Each scenario primitive has a reference name consisting of
the prefix

SP followed by a unique number. For example, the scenario primitive which provides
the detailed sequence of events necessary to acquire data granules from the data server is referred
to as SP 11. The unique number is embedded in the event trace diagram name.

Column 4: Interface Client

Identification of the CSCI acting as the client in the interface (i.e., requesting a service from the
server).

Column 5: Interface Server

Identification of the CSCI acting as the server in the interface (i.e., providing a service to the
client).

Column 6: Description

A brief description of the scenario step.

4.1.5 Scenario 1 - General Data Ingest

4.1.5.1 Purpose

The purpose of this scenario is to demonstrate how data is ingested into the ECS. This scenario also
illustrates the following CSCI interfaces:

1. The use of the subscription notification mechanism to enable Planning CSCI (PLANG) to
receive notification when the L0 data is available for processing in ECS.

2. The interface provided by the Science Data Server CSCI (SDSRV) from the Ingest CSCI to
insert L0 data.

4-3 313-CD-006-002

3. The use of a gateway to enable the Ingest CSCI (INGST) to communicate with and access
data from external systems in a standard way.

4.1.5.2 Start and End Conditions

The scenario starts upon the submittal of a subscription via the PLANG CSCI user interface to
allow PLANG to receive notification when the L0 or higher data has been successfully inserted
into ECS.

The scenario is terminated by the Data Delivery Notification (DDN) message from INGST to the
external facility that produced the L0 or higher data.

4.1.5.3 Preconditions

1. An operator has submited a subscription via the PLANG CSCI user interface. This
subscription is submitted against the SDSRV CSCI that will interact with the INGST CSCI to
archive the L0 or higher data.

2. INGST had queried the Ingest data base to obtain a UR for the appropriate SDSRV, STMGT,
and INGST preprocessing server for the Ingest data type being processed. The Ingest data
base has been preloaded with appropriates UR’s (

see SP 48_B for details).

4.1.5.4 Scenario Description

1. INGST receives a Data Availability Notice (DAN) from Ingest gateway (IGTWY) on behalf
of an external system, then responds with Data Availability Acknowledgment (DAA), and
pulls the data. For L0 data ingest from EDOS, the following steps are performed instead:

a) EDOS pushes file to INGEST staging area

b) EDOS sends PDS Delivery Record (DAN) to ECS

c) ECS ingests data using next steps in scenario in the same fashion

2. INGST loads the L0 or higher data and metadata to a local staging disk.

3. INGST pre-processes the L0 or higher data against the metadata to ensure data values are
valid and the data is formatted correctly.

4. INGST requests the SDSRV CSCI to insert the L0 and corresponding metadata or higher
data. SDSRV creates an archive and notifies INGST that the archive has been successfully
created. NOTE: INGST reuses the SDSRV code on the INGST hardware. From a software
viewpoint, the interface is with the SDSRV.

5. SDSRV notifies INGST that the L0 and metadata has been successfully created.

6. SDSRV notifies PLANG that the L0 or higher data is available.

7. INGST sends a Data Delivery Notice (DDN) to notify the external facility of a successful
transfer. The external system responds with a Data Delivery Acknowledgment (DDA). For
EDOS, the ECS sends a PDS Delivery Verification instead.

This scenario finishes here. ECS would subsequently go into Standard Production as outlined in
Scenario 3.

4-4 313-CD-006-002

Table 4-1 gives a detailed account of this scenario.

4.1.6 Scenario 2 - User Access

4.1.6.1 Purpose

The purpose of this scenario is to present the steps that a user would typically perform to search,
browse, and acquire science data. This scenario also shows how a user can issue multiple queries
asynchronously (i.e., additional queries can be made even while a previous query is in progress).
In addition, this scenario illustrates how a user can save the combined results from two separate
queries for use in a subsequent session. The following CSCI interactions are included:

1. The interaction between the Client Subsystem (CLS) and an identified Science Data Server
CSCI (SDSRV).

2. The basic retrieval operations provided by SDSRV: Search, Browse, and Acquire.

Table 4-1. Scenario 1 General Data Ingest
Step # Ename Primitive

References
Interface
 Client

Interface
Server

Description

1 Receive DAN SP 45 IGTWY INGST Ingest receives Data
Availability Notice (DAN)
from Ingest gateway on
behalf of an external
system, then pulls file using
protocol shown in SP45
(For EDOS see 4.1.5.4).

2 Data Stage SP 4 INGST STMGT Load L0 or higher data to
local staging disk (normal
staging operation).

3 Data Check SP 2 INGST SDSRV Validate L0 or higher
against metadata to ensure
values are in range, etc.

4 Insert Data SP 12 INGST SDSRV INGST requests SDSRV to
insert data. SDSRV creates
archive and notifies INGST
that archive has been
successfully created.

5 Insert
Metadata

SP 12 INGST SDSRV INGST requests SDSRV to
insert metadata. SDSRV
creates archive and notifies
INGST that archive has
been successfully created.

6 Notify
subscribers

SP 8 SDSRV PLANG Notify PLANG that L0 or
higher data is available.

7 Send DDN SP 45 IGTWY INGST Send Data Delivery Notice
to notify external facility of
successful transfer.

4-5 313-CD-006-002

4.1.6.2 Start and End conditions

The scenario starts with the user starting ESST from his desktop workstation and terminates when
the user the user invokes ftp to acquire selected data granules.

4.1.6.3 Preconditions

1. Advertising has been populated with the appropriate advertisements by data server.

2. The interface for the WWW, including searching and browsing advertisements, and the
retrieval of HTML documents is OTS.

3. The user is already logged on to ECS via the Release B Client Subsystem CSCI (CLS).

4. The user, via a WWW browser, has accessed the Advertising Service CSCI (ADSRV) and
provided a search criteria containing keywords which describe a given topic (see SP 48_B for
details).

5. The ADSRV has returned a list of advertisements of available data and services which match
the selection criteria.

6. The user has activated a hyper link referencing guide data on a particular data product.

7. The Document Data Server CSCI (DDSRV) has retrieved and sent the guide document to the
user’s WWW browser (see SP 20 for details).

8. The Distributed Information Manager CSCI (DIMGR) can directly access the identified
SDSRV without going through the Local Information Manager CSCI (LIMGR).

4.1.6.4 Scenario Description

1. The user, from his desktop, starts the Earth Science Search Tool (ESST) which initializes its
available attribute set and valids list by querying the Data Dictionary CSCI (DDICT) after
verifying latest date/time version against locally stored file.

2. ESST initialization retrieves from Advertising Server (ADSRV) CSCI service availability
data.

3. The user creates a search using the ESST GUI. When the user submits a search from the
ESST, which is sent to the SDSRV, the ESST determines the routing of the query from the
DDICT (either by using information already retrieved or by querying the DDICT again).

4. The user uses the ESST to submit a search, with spatial and temporal criteria, to the SDSRV.

5. From the ESST, the user submits a second search which goes to the SDSRV. The ESST
computes the routing information based on the search entered by the user and collection-data
server mapping it obtained from the DDICT.

6. The user via the ESST issues another search to the SDSRV.

7. The SDSRV notifies the user that the first search is complete.

8. The CLS ESST loads the result set from the SDSRV into the ESST result window.

9. The ESST issues the browse request to the SDSRV which supplied the query results.

10. The SDSRV notifies the user that the second search is complete.

11. The CLS ESST loads the second result set from the SDSRV into the ESST result window.

4-6 313-CD-006-002

12. The user reviews the results of the second search, requests graphical and coverage displays,
and requests some browse images. The ESST issues the browse request to the SDSRV which
supplied the query results.

13. The user issues an ACQUIRE request to retrieve some data granules corresponding to one or
more of the retrieved browse images from the SDSRV archives. SDSRV locates the data
granules and sends an e-mail message to the user. The message contains the information
necessary for the SDSRV to send the data to the user.

Table 4-2 gives a detailed account of this scenario.

Table 4-2. Scenario 2 User Access (1 of 2)
Step # Ename Primitive

References
Interface

Client
Interface
Server

Description

1 ESST
initialization

SP 51_B CLS DDICT ESST is populated with valid
values from the DDICT, i.e.
attribute names, type, and
collection to server mapping

2 ESST
initialization

SP 52_B CLS ADSRV ESST retrieves from ADSRV
advertisement URs and whether
they are publicly or privately
accessible.

3 ESST search
submission

SP 9 CLS SDSRV A user search is submitted to the
SDSRV.

4 Search SP 9 CLS SDSRV User queries SDSRV for inventory
of data that matches given search
criteria (e.g., spatial search, sub
select, etc.). SDSRV Query is
executed and results are returned
as ESDT object references.

5 ESST search
submission

SP 9 CLS SDSRV A user search is submitted to the
SDSRV.

6 Search SP 9 CLS SDSRV User queries SDSRV for inventory
of data that matches given search
criteria (e.g., spatial search, sub
select, etc.). SDSRV Query is
executed and results are returned
as ESDT object references.

7 Query 1 Search
complete

(last three
events of SP
9)

CLS SDSRV User is notified that the search is
complete.

8 Inspect Result
Set

SP 55_1B CLS SDSRV The CLS retrieves the metadata
from the SDSRV.

9 Browse 1 SP 29 CLS SDSRV User reviews results of query 1 on
a map overly and requests some
browse images. Browse request
is executed by SDSRV and
results are returned.

4-7 313-CD-006-002

4.1.7 Scenario 3 - Standard Production

4.1.7.1 Purpose

This scenario describes the interaction between the Processing CSCI (PRONG), the Production
Planing CSCI (PLANG), and the data server subsystem during a standard production run. The
processing logic is also applicable to all other types of production, but the planning logic will differ
for on-demand processing and reprocessing. Reprocessing is functionally very similar to stand
production, but is planned differently. These differences are internal to PLANG and do not enhance
our understanding of the interfaces.

PRONG provides schedule management and process control necessary to manage the execution of
an entire job stream. PLANG manages data availability dependencies. Therefore, the scenario
includes subscription notification of data availability, but does not include the detailed process on
the notification of program execution and termination since it is done via database updates. As soon
as the data dependencies are met, PLANG provides job information to COTS for execution by
PRONG.

PRONG provides the capability to stage input data well in advance of the start of the PGE that
requires it. This technique, called predictive staging, attempt to stage data at the optimal time such
that production throughput is maximized, and the staging disk is used efficiently. In addition, input
data may be retrieved from the Science Data Server CSCI (SDSRV) at a remote DAAC. This is an
inherent feature of the SDSRV interface, since it uses the Distributed Object Framework (DOF)
provided by the Communications Services Subsystem (CSS).

4.1.7.2 Start and End Conditions

The scenario starts with an operator activating subscriptions to notify PLANG when input data (L0
and ancillary non-L0 data) required for processing becomes available. The scenario terminates
with the successful archival of the production outputs.

10 Query 2 Search
complete

(last three
events of SP
9)

CLS SDSRV User is notified that the search is
complete.

11 Inspect Result
Set 2

SP 55_1B CLS SDSRV The CLS inspects the validity of
the second result set.

12 Browse 2 SP 29 CLS SDSRV User reviews results of query 2 on
a map overly and requests some
browse images. Browse request
is executed by SDSRV and
results are returned.

13 Acquire Data SP 11 CLS SDSRV CLS request acquisition of data.
The acquisition request is
executed by SDSRV. User is
notified by e-mail where the data
is located.

Table 4-2. Scenario 2 User Access (2 of 2)
Step # Ename Primitive

References
Interface

Client
Interface
Server

Description

4-8 313-CD-006-002

4.1.7.3 Preconditions

ECS is required to notify science teams whenever a new plan is put into production. In order to
satisfy this requirement, the science teams must subscribe to updates to the appropriate DAAC’s
production plan.

4.1.7.4 Scenario Description

1. PLANG automatically submits subscriptions to be notified when required input data is
available for processing.

2. Operations uses a user interface provided by PLANG to active a candidate production plan.

3. PLANG publishes the active plan by archiving a description of the plan as an HTML file in
the Document Data Server CSCI (DDSRV). All parties interested in viewing plans must
previously subscribe to the appropriate DAAC DDSRV.

4. Sometime later, SDSRV notifies PLANG that L0 data required to execute the plan is available
for processing.

5. PLANG verifies the UR for the required L0 data from SDSRV.

6. Sometime later, SDSRV notifies PLANG that ancillary data required to execute the plan is
available for processing. This fulfills all outstanding Data Dependencies.

7. PLANG verifies the UR for the required L0 data from SDSRV.

8. PLANG releases the Data Processing Request (DPR) job to active job schedule.

9. If the PGE is not available, PRONG acquires the PGE from SDSRV using standard SDSRV
acquire operation.

10. PRONG requests the SDSRV to retrieve the L0 data from the archives using the standard
SDSRV Acquire operation. SDSRV copies the data to staging disks allocated to Processing.
SDSRV notifies PRONG when the required data is retrieved from the archives. PRONG may
predictively stage the L0 and ancillary data prior to actual execution of the DPR.

11. PRONG acquires the ancillary data from the SDSRV in the same manner as L0 data was
acquired

12. PRONG starts the execution of a Product Generation Executable (PGE) job. This interface is
internal to the COTS, but is shown here to clarify that the PGE must run to produce data
outputs.

13. PRONG issues a standard SDSRV Insert request to store the PGE outputs in an SDSRV
archive.

 Table 4-3 gives a detailed account of this scenario.

4-9 313-CD-006-002

Table 4-3. Standard Production (1 of 2)
Step # Ename Primitive

References
Interface

Client
 Interface

Server
Description

1 Submit
Subscriptions

SP 7 PLANG SDSRV PLANG activates
subscriptions to enable
notification to PLANG of
data arrival

2 Activate
Candidate
Plan

SP 25 PLANG PRONG Planning activates a
candidate processing plan.

3 Publish DAS SP 46 (a DAS
is inserted into
the archive in
the same
manner as any
document)

PLANG DDSRV PLANG creates a metadata
file describing the plan.
This file is reference by a
hyper link in a HTML
document.

4 Receive
Subscription
Notification

SP 8 SDSRV PLANG SDSRV notifies PLANG
that required L0 data is
available.

5 Verify UR SP 55_2B PLANG SDSRV Inspect the subscription
notification containing a
UR.

6 Receive
Subscription
Notification

SP 8 PLANG SDSRV SDSRV notifies PLANG
that the required ancillary
data is available.

7 Verify UR SP 55_1B PLANG SDSRV Inspect the subscription
notification containing a UR

8 Release DPR
Job

SP 26 PLANG PRONG PLANG release DPR to
active job schedule.

9 Acquire PGE SP 11 PRONG SDSRV Acquire the PGE needed
for production from the
SDSRV.

10 Acquire L0
Data for
Processing

SP 11 PRONG SDSRV Processing requests from
SDSRV to retrieve L0 data
from the archives. This data
can be staged in a
predictive fashion. SDSRV
retrieves L0 data from
archive. PRONG receives
confirmation.

4-10 313-CD-006-002

4.1.9 Scenario 4 - Cross-DAAC Search

4.1.9.1 Purpose

The purpose of this scenario is to demonstrate how ECS performs a search across multiple DAACs.
This scenario is based on the following example:

A user creates a query at the client asking for all SST and humidity data for the Atlantic Ocean
between Oct. 1, 1990 and Oct. 31, 1994. Assume that this query goes to a Distributed Information
Manager CSCI (DIMGR); the DIMGR will use two different data servers to get the data (SDSRV
A and B). A more complicated case would have the DIMGR access one or more Distributed
Information Manager CSCIs (DIMGR) which would then access one or more data servers, the
DIMGR knows what Information Managers (LIMGR or Data Server) it can access. The DIMGR
would choose the correct Information Manager based on optimizations for the given query. The
LIMGR would primarily do the same steps as the DIMGR as outlined in this scenario.

4.1.9.2 Start and End Conditions

The scenario starts upon the client’s submittal of a query using the Earth Science Search Tool
(ESST). The scenario is terminated when the DIMGR combines sub query results from SDSRVs
A and B, and then returns the results to the Release B Client.

4.1.9.3 Preconditions

1. The user uses the ESST to provide a search criteria.

2. The Science Data Server (SDSRV) is accessible directly to the DIMGR, so the query does not
go through the LIMGR.

4.1.9.4 Scenario Description

1. The ESST initializes its available attribute set and valids list by querying the Data Dictionary
CSCI (DDICT) after verifying latest date/time version against locally stored file.

2. ESST establishes a connection to the DIMGR. ESST then submits the search request to the
DIMGR using the session created.

11 Acquire Other
Data for
Processing

SP 11 PRONG SDSRV Processing requests
SDSRV to retrieve non-L0
data from archives. SDSRV
retrieves non-L0 data from
archive. PRONG receives
confirmation.

12 Run PGEJob COTS PRONG
COTS

PRONG
COTS

PGE is a component to the
job stream managed by the
PRONG COTS.

13 Archive
Outputs

SP 12 PRONG SDSRV PGE output data is stored
in SDSRV archive. PRONG
receives confirmation.

Table 4-3. Standard Production (2 of 2)
Step # Ename Primitive

References
Interface

Client
 Interface

Server
Description

4-11 313-CD-006-002

3. DIMGR parses the query and determines that subqueries should be sent to two different
SDSRVs. The DIMGR uses the ADSRV service to get a UR for each SDSRV instance.

4. DIMGR creates a session to SDSRV A using the UR provided by the ADSRV and submits a
sub-query to SDSRV A.

5. DIMGR creates a session to SDSRV B using the UR provided by the ADSRV and submits a
sub-query to SDSRV B.

6. SDSRV A sends DIMGR the results for inspection.

7. SDSRV B sends DIMGR the results for inspection.

8. After DIMGR merges the results, the client is notified, iterates through the results, and
retrieves the data.

 Table 4-5 gives a detailed account of this scenario.

Table 4-5. Cross DAAC Search (1 of 2)

Step # Ename Primitive
References

Interface
Client

 Interface
Server

Description

1 ESST start
up

SP 51_B CLS DDICT ESST check the collection
time and date stamps and
checks against the
DDICT.

2 Submit
query to
DIMGR

SP 52_B CLS DIMGR ESST establishes a
connection to the DIMGR.
The ESST then submits
the search request to the
DIMGR using the session
created. DIMGR parses
the query.

3a Get UR for
SDSRV A

SP 48_B DIMGR ADSRV The DIMGR uses the
ADSRV service to get the
UR for SDSRV A.

3b Get UR for
SDSRV B

SP 48_B DIMGR ADSRV The DIMGR uses the
ADSRV service to get the
UR for SDSRV B.

4 Create
SDSRV
session and
submit sub
queries at
SDSRV A

SP 9 DIMGR SDSRV DIMGR creates a session
to SDSRV A using the UR
provided by the ADSRV
and submits sub queries
to SDSRV A.

5 Create
SDSRV
session and
submit sub
queries at
SDSRV B

SP 9 DIMGR SDSRV DIMGR creates a session
to SDSRV B using the UR
provided by the ADSRV
and submits sub queries
to SDSRV B.

4-12 313-CD-006-002

4.1.10 Scenario 6 - On-Demand Processing

4.1.10.1 Purpose

The Science Data Server (SDSRV) CSCI provides the capability to create ESDTs that offer
services to create higher level data products on-demand. This scenario demonstrates the On-
Demand Processing Request (OPR) interface between the SDSRV CSCI and the Planning
(PLANG) CSCI to provide this capability.

4.1.10.2 Start and End Conditions

The scenario starts with a user acquiring an ECS product and ends with the distribution of a data
product created on demand.

4.1.10.3 Preconditions

1. The user has previously executed a search for this product (see Scenario 2, User Access) and
has saved the search results in order to facilitate subsequent orders of this product. The
granule is represented in the metadata using the “Virtual Metadata” mechanism.

2. The user is authorized to submit on-demand processing requests (OPR).

3. The user has not exceeded authorized processing limits.

4. The dependent data products for the OPR exist in the SDSRV archive.

5. The user issues an Acquire request to retrieve some data granules (on demand).

6. Using the CLS, the user supplies runtime parameters for processing the requested granules.

4.1.10.4 Scenario Description

1. SDSRV submits an OPR to the Planning CSCI (PLANG) and PLANG validates the OPR.
PLANG validates the OPR by executing a search to verify required input data exists.

6 DIMGR
inspects
SDSRV A’s
result set.

SP 55_2B DIMGR SDSRV SDSRV A sends the
results to DIMGR for
inspection.

7 DIMGR
inspects
SDSRV B’s
result set

SP 55_2B DIMGR SDSRV SDSRV B sends the
results to DIMGR for
inspection

8 Client is
notified and
retrieves the
data

SP 54_B CLS DIMGR After DIMGR merges the
results, the client is
notified, iterates through
the results, and retrieves
the data.

Table 4-5. Cross DAAC Search (2 of 2)

Step # Ename Primitive
References

Interface
Client

 Interface
Server

Description

4-13 313-CD-006-002

2. PLANG submits a DPR to the Processing CSCI (PRONG) to acquire the dependent data sets
and run the PGE to create the requested data (see Scenario 3).

3. PLANG returns status, including processing time and resource usage estimates to SDSRV.

4. PLANG returns a UR for the requested data to SDSRV.

5. The SDSRV CSCI requests the Data Distribution (DDIST) CSCI to distribute the data to the
user. The data is staged to the pull disk, the user is notified via e-mail that the data is
available. The user executes an ftp get to acquire the on-demand product (see Scenario 2).

 Table 4-6 gives a detailed account of this scenario.

4.1.11 Scenario 7 - Data Acquisition Request Processing

4.1.11.1 Purpose

The system interface between ECS and the Advanced Spaceborn Thermal Emission and Reflection
Radiometer (ASTER) Ground Data System (GDS) supports the capability for ECS science users
to submit Data Acquisition Requests (DAR) for the ASTER instrument. Once a DAR is accepted
and successfully executed, ASTER GDS will send L1a and L1b data to ECS. When an ECS user
submits a DAR, he/she will typically request that one or more higher level ASTER products
(Level 2) be generated by ECS upon the arrival and insertion of the Level 1b data.

Table 4-6. On Demand Processing
Step # Ename Primitive

References
Interface

Client
 Interface

Server
Description

1 Submit OPR &
PLANG
Validation

SP 49_B SDSRV PLANG SDSRV submits an on-
demand processing
request to PLANG.
PLANG validates request.
As part of validation,
PLANG searches for the
input data.

2 Submit DPR Last event in
SP 25

PLANG PRONG PLANG submits DPR to
PRONG to acquire
dependent data sets and
generate requested data
product.

3 Notify SDSRV SP 50_B SDSRV PLANG PLANG notifies SDSRV of
status, including
processing time and
resource usage.

4 Notify SDSRV SP 50_B SDSRV PLANG PLANG notifies SDSRV
that data is available.

5 Distribute data
to user

SP 11 SDSRV DDIST SDSRV requests
distribution of data. The
user is notified via e-mail
and executes an ftp get to
acquire the data.

4-14 313-CD-006-002

The purpose of this scenario is to demonstrate how a DAR is submitted and processed within ECS,
and how the higher level products are generated. This scenario reuses portions of the following
scenarios:

1. Scenario 2 - User Access

2. Scenario 1 - Ingest of Higher Level Products

3. Scenario 6 - On-Demand Processing

4.1.11.2 Preconditions

1. The user is authorized to submit DARs.

2. ASTER GDS provides DAR Client application.

3. ASTER GDS returns a DAR ID to ECS.

4. Several ASTER L1a and L1b scenes will be ingested into ECS as a result of a single DAR.

5. An ECS user may request multiple ASTER products to be generated by ECS each time L1b
ASTER data arrives.

6. The DAR ID and identifying DAR parameters are included in the L1 metadata to allow ECS
to match a DAR to a specific set of data. (Refer to document# 209-CD-002-003, ICD Between
ECS and ASTER.)

ECS will distribute individual higher order products to the user as they become available, rather
than distribute all requested products at one time

4.1.11.3 Start and End Conditions

The scenario starts with the creation of a DAR, and submittal to ASTER GDS using the Client
Subsystem (CLS), and terminates when the user invokes ftp to acquire selected data granules.

4.1.11.4 Scenario Description

1. The user creates a DAR for ASTER L1b data using the ASTER provided DAR tool integrated
with CLS.

2. The user specifies several L2 ASTER products to be generated upon the arrival of the L1b
data.

3. Using the CLS, the user supplies runtime parameters for processing each L2 product
requested.

4. The user submits the DAR and a unique DAR ID is returned.

5. The CLS creates a subscription against the insertion of L1b data to the Science Data Server
CSCI (SDSRV) for each L2 product requested. Each subscription contains the DAR ID and
the following instructions:

Event: L1b inserted (Event that triggers the actions)

Actions: Search L1b metadata for DAR ID = XX (and/or other metadata values that uniquely
identify the data)

Process data to L2 using runtime inputs provided

Notify user and distribute the L2 data

4-15 313-CD-006-002

6. The Ingest CSCI (INGST) ingests the ASTER L1b and inserts it into the SDSRV archive (see
Scenario 4). This event triggers the actions specified in the subscriptions created with the
DAR

7. SDSRV determines that the L1b data corresponds to the correct DAR ID.

8. To process the data to L2, SDSRV submits an on-demand processing request (ODPR) to the
Planning CSCI (PLANG). PLANG submits a Data Processing Request (DPR) to the Data
Processing CSCI (PRONG). PRONG executes the DPR to acquire the L1b data, and run a
PGE to create the L2 data which is returned (via a Universal Reference (UR)) to SDSRV (see
Scenario 6 - On-demand Processing Request).

9. SDSRV requests the Data Distribution CSCI (DDIST) to distribute the L2 data to the user.
The L2 Data is staged to the pull disk, the user is notified via e-mail that the data is available.
The user executes an ftp get to acquire the L2 product.

 Table 4-7 gives a detailed account of this scenario.

Table 4-7. Data Acquisition Request Processing (1 of 2)
Step # Ename Primitive

References
Interface

Client
 Interface

Server
Description

1 Input DAR
parameters

GUI User CLS User creates DAR using
DAR client tool.

2 Select higher
level (L2)
ASTER
products

SP 48_B CLS ADSRV DAR Client queries ADSRV
to find possible ASTER L2
products. User selects L2
products to be generated
upon arrival of ASTER L1b
data.

3 Input Runtime
Parameters

GUI User CLS User inputs run time
parameters for each
selected L2 product.

4 Submit DAR &
get DAR ID

Refer to
document#
209-CD-002-
003, ICD
Between ECS
and ASTER
GDS.

CLS ASTER GDS The user submits the DAR
to ASTER GDS. The
ASTER GDS returns the
unique DAR ID to the CLS.

5 Submit
Subscription(s
)

SP 7 CLS SDSRV The CLS creates a
subscription to SDSRV
against the insertion of
ASTER L1b for each
selected L2 product.

4-16 313-CD-006-002

4.1.12 Scenario 8 - Billing And Accounting

4.1.12.1 Purpose

The purpose of this scenario is to demonstrate how Billing and Accounting will handle requests for
pricing a data product request and checking the user’s available balance to determine whether the
product can be ordered by the science user.

Part of the User Access Scenario, this scenario is actually a subscenario that illustrates price
checking, balance checking, and user account updates.

This scenario also illustrate the following CSCI interfaces:

1. The interface provided by EcPriceTable to the SDSRV to update product prices.

2. The interface provided by MsAcUsrProfileMgr and MsUsProfile to the SDSRV to verify and
update user accounts of shipped products.

3. The interfaces provided by SDSRV to the CLS CSCI to continue order processing after the
product price has been computed.

4.1.12.3 Start and End Conditions

The scenario starts when a registered ECS user requests a billable data product.

The scenario is terminated when the SDSRV receives a complete acquire command.

6 Ingest and
insert ASTER
L1b

Scenario 1 -
Ingest of
Higher Level
Products

INGST SDSRV The ASTER L1a, L1b data
and metadata is ingested
and inserted into the
SDSRV archive. This event
triggers the actions
associated with the L1b
subscriptions.

7 Create and
Execute On-
Demand
Processing
Request

Scenario 6 -
On-Demand
Processing

SDSRV PDPS SDSRV creates an ODPR
to PLANG which, in turn
submits a DPR to PRONG
to create the L2 product.
Upon successful
completion of the DPR,
SDSRV is notified and
given a UR for the L2 data.

8 Distribute L2
data to user.

SP 11 SDSRV DDIST SDSRV requests
distribution of L2 data. The
user is notified via e-mail
and executes an ftp get to
acquire the data.

Table 4-7. Data Acquisition Request Processing (2 of 2)
Step # Ename Primitive

References
Interface

Client
 Interface

Server
Description

4-17 313-CD-006-002

4.1.12.3 Preconditions

1. The ECS registered user has an account established in the Billing and Accounting
Application Service (BAAS) CSCI.

2. The acquire request is pending (the first ten steps of SP11 have been completed and the last
three are pending completion).

3. The ECS user has enough funds to fulfill a request.

4.1.12.4 Scenario Description

1. SDSRV sends a pricing request to MSS/BAAS for estimates of each subrequest that can be
priced.

2. SDSRV retrieves the science user’s available balance to determine if enough funds exist to
honor the request.

3. SDSRV sends the product price to the CLS CSCI to verify further processing of the order; in
this scenario, the request to complete the order is given by the ECS user via the CLS CSCI.

4. SDSRV requests the MSS/BAAS to deduct the price of the current request from the ECS
user’s User Profile database balance.

5. SDSRV places a firm request to acquire the data.

Table 4-8 gives a detailed account of this scenario.

Table 4-8. Product Request Pricing and User Profile Update
Step# Ename Primitive

References
Interface

Client
Interface
Server

Description

1 Request pricing
estimates

SP 58_B SDSRV MSS/BAAS Retrieve price(s)
of current
request(s)

2 Check available
user funds

SP 59_B SDSRV MSS/BAAS Retrieve ECS
user’s available
balance from
User Profile
database.

3 Request verification
of order processing

send
SetServiceNa
me(service:stri
ng=“Estimate”)
 to
DsClComman
d.

CLS SDSRV SDSRV requests
the CLS CSCI to
verify order
processing by
having CLS send
the appropriate
DsClCommand.

3 Initiate request to
deduct given
amount from User
Profile’s available
balance

SP 60_B SDSRV MSS/BAAS Update the User
Profile database

4 Confirm product
request

Acquire (last 3
steps of SP
11)

CLS SDSRV Complete the
acquire process;
notify the client.

4-18 313-CD-006-002

4.1.13 FOS/SDPS Interfaces

4.1.13.1 Introduction

This section captures the interfaces used by Flight Operations Subsystem CSCI (FOS) to send data
to the Science Data Server CSCI (SDSRV) and Ingest CSCI (INGST). To illustrate the
interoperability of these three subsystems, a series of scenarios (similar in format and content to
the scenarios found in section 4), is presented.

FOS sends the following categories of data to the SDSRV:

1. Real-time Telemetry

2. Ground Telemetry

3. Events

4. Configuration Data

5. Operational Data

6. Plans and Schedules

7. orbit data

Refer to FOS Database Design and Database Schema [311-CD-001-003], Appendix A, FOS
database matrix for actual the description of the actual data types in the given categories above.

This section has been included in this internal interface ICD since it reuses ECS SDPS components.

4.1.13.2 Scenario 1 - SDSRV Interaction

4.1.13.2.1 Purpose

The purpose of this scenario is to demonstrate how FOS sends data pertaining any of the above
FOS data categories to the SDSRV CSCI for storage and requests a search from the SDSRV CSCI
for information pertaining to the information listed above or performs an acquire for data
pertaining to the information listed above. This scenario also illustrates the following CSCI
interfaces:

1. The use of the SDSRV for standard insert, query, and acquire methods.

4.1.13.2.2 Start and End Conditions

The scenario starts by FOS having information for insertion into the SDSRV.

The scenario is terminated by either FOS receiving query results or email containing the reference
need to retrieve stored data.

4.1.13.2.3 Scenario Description

1. FOS submits an insert request to the SDSRV.

2. FOS can either submit a query the SDSRV or perform an ACQUIRE.

Table 4-9 gives a detailed account of this scenario.

4-19 313-CD-006-002

4.1.13.3 Scenario 2 - Advertisement of FOS Data

4.1.13.3.1 Purpose

The purpose of this scenario is to demonstrate how the PLANG CSCI uses SDSRV to acquire Data
Availability Schedules (DAS) which are provided to SDSRV by FOS. This scenario illustrates the
following CSCI interfaces:

The use of FOS DMS and the SDSRV CSCI.

4.1.13.3.2 Start and End Conditions

The scenario starts upon an event that triggers SDSRV to notify ADSRV.

The scenario is terminated by the PLANG receiving the UR to retrieve a particular DAS.

4.1.13.3.3 Scenario Description

1. PLANG searches for a particular service or advertisement on the ADSRV pertaining to a
given DAS.

2. PLANG submits a subscription to SDSRV for a particular DAS.

3. SDSRV notifies ADSRV that a particular event has occurred, in this instance a series of DAS
are pending insertion.

4. FOS DMS sends the DAS, which happens to be the DAS needed by PLANG, to SDSRV for
insertion.

5. SDSRV sends PLANG a subscription notification.

6. PLANG sends SDSRV an ACQUIRE with UR.

Table 4-10 gives a detailed account of this scenario.

Table 4-9. Scenario 1 FOS/SDPS Interface
Step # Ename Primitive

References
Interface

Client
Interface
Server

Description

1 Insert SP 12 FOS SDSRV Insert data
pertaining to the
FOS data listed
above into the
SDSRV.

2a Query SP 9 FOS SDSRV Query the SDSRV
for information
needed by FOS.

2b Acquire SP 11 FOS SDSRV Submit a request to
distribute requested
data to FOS.

4-20 313-CD-006-002

4.1.13.3 Scenario 3 - FOS-INGST Interaction

4.1.13.3.1 Purpose

The purpose of this scenario is to demonstrate how FOS uses the INGST CSCI to insert AM-1
Science Data, or any the of data items listed in this subsection’s introduction, and provide it to the
SDSRV. FOS later retrieves data from the SDSRV. This scenario illustrates the following CSCI
interfaces:

1. The use of the INGST CSCI to insert data from FOS.

4.1.13.3.2 Start and End Conditions

The scenario starts upon an event that triggers SDSRV to notify ADSRV.

The scenario is terminated by the FOS receiving the UR to retrieve a particular AM-1 data.

Table 4-10 Scenario 2 FOS/SDPS Interface
Step # Ename Primitive

References
Interface

Client
Interface
Server

Description

1 Search for
Advertisement

SP 48_B PLANG ADSRV PLANG searches for
advertisements
pertaining to data
availability
schedules.

2 Submit
Subscription

SP 7 PLANG SDSRV PLANG submits a
subscription for a
DAS that will be
made available in
the future.

3 Advertise
Event

SP 61_B SDSRV ADSRV Trigger an event.

4 Insert SP 12 FOS DMS SDSRV FOS DMS inserts a
series of DAS into
the SDSRV in which
one of the DAS is the
one requested by
PLANG.

5 Notification SP 8 PLANG SDSRV SDSRV notifies
PLANG of the
availability of the
requested DAS.

6 Acquire with
UR

SP 56_B PLANG SDSRV PLANG goes
through the process
of acquiring the
DAS.

4-21 313-CD-006-002

4.1.13.3.3 Scenario Description

1. SDSRV advertises an event to the ADSRV, in this case the use of a particular flight plan to
collect AM-1 data.

2. FOS DMS submits a subscription to SDSRV so that FOS can later retrieve inserted data.

3. INGEST sends AM-1 data to SDSRV for insertion.

4. SDSRV sends FOS DMS a subscription notification that the subscribed data has been
inserted. This notification contains a UR that FOS DMS will need to use for retrieval.

5. FOS DMS sends SDSRV an ACQUIRE with UR command to retrieve inserted data.

Table 4-11 gives a detailed account of this scenario.

4.2 Interface Scenario Primitives
This section contains the Release B scenario primitives. For each scenario primitive, descriptive
text accompanies an event trace. The event traces show the signature and the calling sequence of
the public services being called by another ECS object.

The scenario primitives shown here, in many cases, make use of the key mechanisms described in
section 5. A forward reference identifying a key mechanism will be identified in the descriptive
text describing each scenario primitive.

There are more scenario primitives than are used by the system-level scenarios (see section 4.1).
These primitives are required for specific interactions between the CSCI’s but are not called out by
one of the system-level scenarios. Primitives 48-60 have been added in support of Release B. Each
Release B primitive name ends with “_B”.

Table 4-11. Scenario 3 FOS/SDPS Interface
Step # Ename Primitive

References
Interface

Client
Interface
Server

Description

1 Advertise
Event

SP 61_B SDSRV ADSRV Trigger and event.

2 Submit
Subscription

SP 7 FOS DMS SDSRV FOS submits a
subscription for data
that it will or has
inserted into the SDPS
segment of ECS.

3 Insert SP 12 INGST SDSRV INGST inserts AM-1
data into the SDSRV.

4 Notification SP 8 FOS DMS SDSRV SDSRV notifies FOS
that the requested
data has entered
storage.

5 Acquire with
UR

SP 56_B FOS DMS SDSRV FOS acquires inserted
data from the SDSRV.

4-22 313-CD-006-002

Note: Scenario primitive numbers are not consecutive. Missing scenario primitives were either
turned into key mechanisms (see section 6) or were found to be redundant and thus covered by one
of the remaining scenario primitives.

These scenario primitives define only the cross-CSCI interfaces. As such, the primitives do not
expound upon the internal operation of a CSCI. Internal CSCI functionality is defined in the
respective CSCI design documentation.

Table 4-4. Scenario Primitive Table (1 of 2)

Primitive Name Description Loc
2 L0 Check Ingest client validates L0 metadata 4.2.1

3a Archive Store SDSRV - STMGT primitive (part of SDSRV
Insert - SP 12)

4.2.2

3b Archive Retrieve SDSRV-STMGT primitive (part of Acquire Data
- SP 11)

4.2.3

4 Create Staging File Allocate disk, [make directory], write data,
[deallocate]

4.2.4

5a Create Electronic Distribution Distribute granules on staging file for ftp 4.2.5

5b Create Physical Distribution Distribute granules on hard-copy media (tape,
cdrom)

4.2.6

7 Submit Subscription Submit subscription to SDSRV/ADSRV for
notification of new granules

4.2.7

8 Subscription Notification Notify subscribers that a data product is
available

4.2.8

9 SDSRV Query Client requests ESDT selection operation
(spatial search, sub-select,...)

4.2.9

10 Advertising This has been replaced by SP 48_B to reflect
the current design.

4.2.10

11 Acquire Data Submit request to distribute ESDT to client WS
disk or distribution media

4.2.11

12 SDSRV Insert Submit request to push data into SDSRV -
Create UR and save

4.2.12

16 V0 Inventory Query V0 Client Inventory Query 4.2.13

17a V0 Gateway Integrated
Browse

V0 Client Browse 4.2.14

17b V0 Gateway FTP Browse V0 Client Browse 4.2.15

18 V0 Acquire V0 Client Acquire 4.2.16

19 V0 Directory Searches V0 Directory Search processed by Gateway
Subsystem at a single site.

4.2.17

20 Acquire Document COTS - DDSRV will be HTML server w/
separate file system

4.2.18

25 Activate Plan Operations requests PLANG to activate a plan 4.2.19

26 Release DPR Job PLANG releases DPR Job to Job Schedule 4.2.20

4-23 313-CD-006-002

4.2.1 L0_CHECK_SP2

This scenario shows the public interface provided by SDSRV to check L0 metadata against a
descriptor for an existing ESDT. This interface is used primarily by INGST during the data pre-
processing phase.

The calling object must create an instance of GlParameter for each parameter/value pair included
in the metadata. The parameters are then inserted into a GlParameterList object. The L0 metadata
file format and the operations used to create the necessary GlParameter objects are internal to

29 Browse Real time retrieval of browse images - no
distribution request needed

4.2.21

45 Ingest Gateway I/F INGST creates session with ingest gateway
(DAN)

4.2.22

46 Insert Document PLANG stores plan in DDSRV 4.2.23

47 Search Document COTS-DDSRV will be HTML server with
separate file system.

4.2.24

48_B Retrieve Service Universal
Reference (UR)

An application establishes a connection to an
instance of SDSRV

4.2.25

49_B Submit OPR Submittal of an On-Demand Processing
Request to PLANG

4.2.26

50_B Callback Mechanism for setting and invoking callbacks
between calling and server objects.

4.2.27

51_B DDICT Query Data Dictionary is queried by ESST 4.2.28

52_B DIMGR Query Submission ESST submits a search request to DIMGR 4.2.29

54_B DIMGR Result Retrieval Client Retrieves data from DIMGR after DIMGR
has merged results from multiple SDSRVs.

4.2.30

55_1
B

Inspect Granule Value
Parameters

Mechanism for SDSRV client applications to
obtain the value of the parameters of a granule.

4.2.31

55_2
B

Inspect Granule UR Mechanism for SDSRV client applications to get
the UR of a granule.

4.2.32

56_B Acquire Data with UR Submit request to distribute ESDT based on UR 4.2.33

57_B Ingest-Advertising Server
Interface

Mechanism for populating the Ingest data type
data base with service universal references.

4.2.34

58_B Retrieve Product Price Mechanism for retrieving local product price
information from the SMC.

4.2.35

59_B Verify Available Funds Mechanism for SDSRV to verify if user has
enough available funds to pay for a chargeable
product.

4.2.36

60_B Update User Profile
Database

Transfer product cost from user’s available
funds.

4.2.37

61_B Submit Service
Advertisement

Mechanism on how to advertise a service. 4.2.38

Table 4-4. Scenario Primitive Table (2 of 2)
Primitive Name Description Loc

4-24 313-CD-006-002

INGST. The calling object then creates an instance of DSClESDTDescriptor, passing the SDSRV
Universal Reference (UR), and an identifier corresponding to the ESDT contained in the L0 data.

The DSClESDTDescriptor class provides a Validate method which accepts a GlParameterList and
returns a GlStatus. If any parameters are invalid, The GlStatus object contains enough information
to enable the calling object to determine which parameters are invalid and the reason they were
flagged.

See Figure 4-1.

4.2.2 STMGT_STORE_SP3a

This scenario shows how a request is made to STMGT to store data to archives. The scenario
involves two CSCIs: the requesting CSCI (the owner of the CallingObject); and STMGT, which
manages archival storage.

The request is made by a call from an object of the requesting CSCI to an instance of a
DsStArchive_C, which is distributed from STMGT. The calling object then calls the store
operation on the archive object providing the following information:

1. unique file name

2. original file name

3. path

After control is returned to the CallingObject, it deletes the archive object.

See Figure 4-2.

4.2.3 STMGT_RETRIEVE_SP3b

This scenario shows how a request to STMGT to retrieve data from archives. The scenario involves
two CSCIs: the requesting CSCI (the owner of the CallingObject); and STMGT, which manages
archival storage.

The request is made by a call from an object of the requesting CSCI to an instance of a
DsStArchive_C, which is distributed from STMGT. The calling object then calls the retrieve
operation on the archive object, providing the following information:

1. unique file name

2. original file name

3. path

4. checksum (previously calculated by STMGT)

5. file size

6. the delivery location

as an argument to the call. After control is returned to the CallingObject, it deletes the archive
object.

See Figure 4-3.

4-25
313-C

D
-006-002

CallingObject GlParameter GlParameterList DsClESDTDescriptor

Ctor(ParamType:String,ParamVal:Value)

Ctor(ParamType:String,ParamVal:Value)

Ctor()

Insert(Param:GlParameter)

Insert(Param:GlParameter)

Ctor(SDSRV:DsClUR,DataType:String)

Validate(GlParameterList):GlStatus

Dtor()

Figure 4-1. L0_CHECK_SP2 Diagram

4-26 313-CD-006-002

Figure 4-2. STMGT_STORE_SP3a Diagram

CallingObject DsStArchive_C

ctor()

Store(DsStFileParamters, Cost))

dtor()

4-27 313-CD-006-002

Figure 4-3. STMGT_RETRIEVE_SP3b Diagram

CallingObject DsStArchive_C

ctor()

dtor()

Retrieve(DsShFileParamters):EcUtStatus

4-28 313-CD-006-002

4.2.4 STMGT_STAGE_SP4

This scenario shows how a request is made to allocate and use a staging disk being managed by
STMGT. The scenario involves two CSCIs: the requesting CSCI (the owner of the CallingObject);
and STMGT, which provides the staging disk.

The request is made by a call from an object of the requesting CSCI to an instance of a
DsStStagingDisk_C, which is distributed from STMGT. The allocation request is implicit in the
constructor for the DsStStagingDisk object. The calling object then interacts with the
DsStStagingDisk_C through method calls, which mimic direct use of the operating system's file
system. In this way, directories and files can be created, moved, renamed etc. When the requesting
CSCI is finished with the staging disk, the CallingObject deletes the staging disk object. The
deallocation of the staging disk is implicit in the destructor for the DsStStagingDisk object.

Figure 4-4. STMGT_STAGE_SP4 Diagram

4.2.5 DDIST_PULL_NOTAR_SP5a

This scenario shows how a request for electronic pull distribution of data granules is processed.
The scenario involves three CSCIs: A requesting CSCI (owner of the CallingObject); DDIST,
which provides the distribution service; and STMGT, which is used by DDIST in providing the
distribution service.

CallingObject DsStStagingDisk

Create one or more directories

Directory methods are: copy, Rename, Delete, Dir, MkDir

Create one or more files

File methods are Open, Write, Put, Flush, Close

ctor()

dtor()

ctor()

DsStStream

mkdir(name:string)

4-29 313-CD-006-002

The request is made by a call from an object of the requesting CSCI to an instance of a
DsDdDistList, which is imported, but not distributed, from DDIST. DsDdDistList then initiates the
creation of a number of DDIST objects which collaborate to implement the distribution service. An
active object, DsDdDistRequest_S, is created on the Server side, which returns control to the
requesting CSCI and then continues execution of the service on the server side. DDIST requests
allocation of a network resource from STMGT using the STMGT distributed class
DsStNetworkResource_C, asks the network resource to distribute the data items to the pull disk,
and then deallocates the resource. DDIST notifies the requester (not the CallingObject, but rather
the user on whose behalf the CallingObject made the request) via an imported utility class,
GlNotification. During the processing of the request, the acceptance of the request by DDIST and
the completion of the request are logged using the services of the imported utility class
EcUtLogger. Since DsDdDistRequest is a distributed object, the requesting CSCI may query it for
the value of its myState attribute. When DDIST is finished with the request, it sets the value of
myState to indicate that the items are awaiting shipment.

See Figure 4-5.

4.2.6 DDIST_TAPE_SP5b

This scenario shows how a request for physical distribution of data granules is processed. The
scenario involved three CSCIs: A requesting CSCI (the owner of CallingObject); DDIST, which
provides the distribution service; and STMGT, which is used by DDIST in providing the
distribution service.

The request is made by a call from an object of the requesting CSCI to an instance of a
DsDdDistList, which is imported, but not distributed, from DDIST. DsDdDistList then kicks off
the creation of a number of DDIST objects that collaborate to implement the distribution service.
An active object, DsDdDistributionRequest_S, is created on the server side, which returns control
to the requesting CSCI and then continues execution of the service on the server side. DDIST
allocates a tape device from STMGT using the STMGT distributed class DsStTape, and uses a
shell command to create an archive file and save the file to tape. DDIST notifies the requester (not
the CallingObject, but rather the user on whose behalf the CallingObject made the request) via an
imported utility class, GlNotification. During the processing of the request, the acceptance of the
request by DDIST and the completion of the request are logged using the services of the imported
utility class EcsUtLogger. During the processing of the request, the acceptance of the request by
DDIST and the completion of the request are logged using the services of the imported utility class
EcsUtLogger. Since DsDdRequest is a distributed object, the requesting CSCI may query it for the
value of its myState attribute. When DDIST is finished with the request, it sets the value of myState
to indicate that the items are awaiting shipment.

See Figure 4-6.

4-30
313-C

D
-006-002

CallingObject DsDdDistRequest_S DsDdDistList DsDdRequestProcessor DsStNetworkResource_C GINotofication EcUtLogger DsDdPullMedia

(Media:char*,User:MsUsProfile,Format:char*):DsDdDistributionRequest

Internal CSCI steps to create necessary DDIST object
():DsDdDistributionRequest

Processing of the request continues on the server side

Log receipt, requestor's name, size of distribution, and destination |

After creating a packing slip instance... |

| After creating a file list, iterate through the list and distribute each item

(ResourceType,RequestID,Priority,Size,ProfileInfo):ResourceRef

(SourceResource,Oper="PULL",DataItemName)

():string

GIStatus& theStatus

(string)

Notify the original requestor of placement of items on pull disk |

Log completion time and status |

| set mystate to
indicate ready for pull

Distribute()

ctor()

return()

ServiceRequest

Log()

ctor()

ctor()

Allocate()

DistFrom()

Deallocate()

GetPackingListFile()

SendToUser()

Log()

SetState()

Figure 4-5. DDIST_PULL_NOTAR_SP5a Diagram

4-31
313-C

D
-006-002

DsSdWorkingCollection
DsDdDistList

GlNotification
DsStTape_CDsDdTapeProcessor

EcUtLogger

DsDdTapeMedia

DsDdDistRequest_S

(char* Media, MsUsProfile User, char* Format):DsDdDistributionRequest

(string)
Log receipt of the request

(ResourceType,MediaType,RequestId,Priority,Size,ProfileInfo)

(GlStatus& theStatus)

(string Format)

():string

Execute shell command to create arcive file on tape.

Print packing slip and return control
 to DsDdTapeProcessor

(string)
Completion, Requestor's name, # volumes, # files, destination

Print shipping label

Processing of request continues on server side...

(string="awaiting shipment")

Set myState to indicat awaiting shipment

DsDdDistributionRequest

Intrnal CSCI steps to create necessary DDIST objects
Distribute()

Log()

ctor()

Allocate()

ctor()

SelectFrmt()

GetResourceId()

return()

Deallocate()

SendToUser()

Log()

ServiceRequest()

SetState()

ctor()

return()

Figure 4-6. DDIST_TAPE_SP5b Diagram

4-32 313-CD-006-002

4.2.7 SUBMIT_SUBSCRIPTION_SP7

This scenario primitive demonstrates the steps that the client application (CallingObject) must
perform to submit a subscription on behalf of an end-user. The preconditions for this scenario
primitive are that a user has selected an advertised subscription from the Advertiser and the client
application has created an instance of the advertisement. The advertisement contains information
about the event that will trigger the subscription. The user may specify an action for the data server
to perform whenever the subscribed event occurs. For example, the user could request automatic
distribution whenever new CERES02 data is arrives.

The scenario primitive starts with the client application creating a subscription, passing the
advertisement (event information) and user information (notification recipient). The client then
creates an action which includes a request and an optional notification text string (user-entered
data). Next the DsClSubscription object's SetAction() operation is used to register the user defined
action. Finally the Submit() operation activates the subscription.

See Figure 4-7.

4.2.8 SUBCRIPTION_NOTIFICATION_SP8
This scenario primitive demonstrates how ECS notifies a user who has subscribed to a service that
an event has occurred related to the service. In this case, the notification is delivered to an end-user
via e-mail. The scenario assumes that an event has occurred to trigger the notification (e.g., the
arrival of new data).

The object that manages the subscribed service (Subscription Notifier) first creates an instance of
a GlNotification object. The Subscription Notifier then invokes the SendtoUser() operation
provided by GlNotification. GlNotification retrieves the user's email address from the UserProfile
object (see ECS Key Mechanism 2). Next GlNotification creates an email object CsEmMailRelA
provided by CSS and invokes the operations AddTo(), Subject(), AddMessage(), and Send() to
build and send an email containing the appropriate notification text. The CsEmMailRelA uses the
O/S mail service to deliver the notification to the user.

See Figure 4-8.

4.2.9 SDSRV_QUERY_SP9
This scenario primitive demonstrates the public interface provided by SDSRV to perform a normal
search operation. The calling object constructs a query by creating an instance of DSClQuery. The
query object accepts a parameter list (GlParameterList) and a callback function (GlCallback)
which is invoked when the query is complete. The parameter list is a set of parameter/value pairs
which are combined to define the search criteria. The search criteria is the conjunction of spatial,
temporal, and keyword parameters.

The mechanics of the query execution are internal to SDSRV. The ECS callback key mechanism
is used to invoke the calling object's function when the query has completed. A typical callback
function in this scenario will extract the ESDT references that were inserted into the
DSClESDTReferenceCollector during the query execution. This is accomplished via standard
container class iterators: GetFirst(), GetNext, etc. Which return ESDT references in this case.

GlCallback is not implemented as an object but implemented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

See Figure 4-9

4-33
313-C

D
-006-002

CallingObject DsClRequest DsClSubscriptionDsClActionDsClCommand

Client creates a command then
creates a request containing

the command

Client creates an action
containing the request

and an optional
notification text string

Client Creates a subscription
from an advertisement

which specifies a
subscription service

Client sets action to invoke
whenever subscription

is triggered by
advertised event

Client submits subscription

ctor(svc:RWCString&, paramList:GlParameterList&,cat:DsESrCammandCategory)

SetAction(action:DsClAction):void

Submit():GlStatus&

ctor(command:DsClCommand *, pty:DsESrRequestPriority)

ctor(subscrSvc:Advertisement&, userInfo)

ctor(request:DcClRequest&,notify:RWBoolean,text:RWCString *)

Figure 4-7. SUBMIT_SUBSCRIPTION_SP7 Diagram

4-34
313-C

D
-006-002

Subscription Notifier
GlNotification UserProfile ECS User

Key Mechanism #2

CsEmMailRelA

ctor()

SendToUser()

Get E-mail Address

AddTo(emailAddress:String)

ctor()

Subject(subject:String)

AddMessage(body:String)

Send()

Send Mail

dtor()

dtor()

dtor()

Figure 4-8. SUBSCRIPTION_NOTIFICATION_SP8 Diagram

4-35
313-C

D
-006-002

CallingObject
DsClQueryGlCallback DSClESDTReferenceCollectorGlParameter GlParameterList

Create calback using KM

Callback is invoked using KM

SDSRV executes Search method
and populates ESDT Collector with

ESDT references.

CallingObject uses standard container
class access methods to
extract ESDT references

ctor(SDSRV:DSClUR,Client:GlClient(ClientName:String))

ctor(paramType:String,paramVal:Value)

ctor(paramType:String,paramVal:Value)

ctor()

Insert(Parameter:GlParameter)

Insert(Parameter:GlParameter)

ctor()

ctor(ParamList:GlParamList,Callback:GlCallback)

Search(Query:DSClQuery)

Invoke()

GetFirst():DSClESDTReference, GetNext():DSClESDTReference,.

dtor()

Figure 4-9. SDSRV_QUERY_SP9 Diagram

4-36 313-CD-006-002

4.2.10 ADVERTISING_SP10

Originally designed for Release A, this scenario privmitive is no longer valid with the current
design. The mechanism that replaces this particular scenario primitive is Retrieve Service
Universal Reference (UR) SP 48_B.

4.2.11 ACQUIRE_DATA_SP11

This scenario (see Figure 4-10) shows how a request is made to acquire data from the SDSRV. The
scenario involves two CSCIs: the requesting CSCI (the owner of the CallingObject); and SDSRV,
which provides the data.

The main interface with SDSRV is through an instance of the SDSRV distributed class,
DsClESDTReferenceCollector, which has been provided the identity of a GlCallback instance to
be called upon completion of the request. An instance of DsClRequest, which is imported but not
distributed, is created and one or more instances of DsClCommand are inserted into it. Into each
DsClCommand object is inserted a list of parameters which define the data to be acquired, and an
attribute of DsClCommand is set to indicate that it is an “Acquire” command. The calling object
then asks each request to submit itself. Each DsClRequest instance then inserts itself into the
DsClESDTReferenceCollector instance, which then submits the requests to SDSRV. The
requesting CSCI continues after making this synchronous call. Later, SDSRV notifies the
requesting CSCI of the completion status by calling the invoke operation on the specified
GlCallback instance. The call to GlCallback is a local call from a distributed SDSRV object.

GlCallback is not implemented as an object but implemented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

4.2.12 INSERT_DATA_SP12

This scenario (see Figure 4-11) zshows how a request is made to insert data into SDSRV. The
scenario involves two CSCIs: a requesting CSCI (the owner of the CallingObject); and SDSRV,
which accepts the insert request. The purpose of the scenario is to detail the inter-CSCI
interactions. Therefore, steps which are internal to a CSCI are summarized through textual
comments on the Event Trace Diagram that corresponds to the scenario.

The main interface with SDSRV is through an instance of the SDSRV distributed class,
DsClESDTReferenceCollector, which has been provided the identity of a GlCallback instance to
be called upon completion of the request. An instance of DsClRequest, which is imported but not
distributed, is created and one or more instances of DsClCommand are inserted into it. Into each
DsClCommand object is inserted a list of parameters which define the data to be stored, and an
attribute of DsClCommand is set to indicate that it is an “Insert” command. The calling object then
asks each request to submit itself. Each DsClRequest instance then inserts itself into the
DsClESDTReferenceCollector instance, which then submits the requests to SDSRV. The
requesting CSCI continues after making this synchronous call. Later, SDSRV notifies the
requesting CSCI of the completion status by calling the invoke() operation on the specified
GlCallback instance. The call to GlCallback is a local call from a distributed SDSRV object.

GlCallback is not implemented as an object but implmented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

4-37
313-C

D
-006-002

CallingObject DsClESDTReferenceCollector DsClRequest DsClCommand GlParameterList GlParameter
GlCallback

(dataserver:GlUR&, GlClient&)

(DsClCommand)

(DsClESDTCollector &): GlStatus

The constructor places one
Acquire command in the request.

Ask the request to insert itself
into the collector and submit itself

(GlCallback &)

After synchronous return, SDSRV acts as CallingObject in SP3B.

(category:string="DDIST")

(service:string="Acquire")

(mediatype:string,string="electronicpull")

(GlParameter)
For each parameter...

(GlParameterList)

After completion of SP3, the
specified GLCallback is called

ctor()

SetCategory()

SetServiceName()

ctor()

ctor()

Insert()

SetParameter()

ctor()

ctor()

setStatusCallback)

Submit()

ctor()

invoke()

Figure 4-10. ACQUIRE_DATA_SP11 Diagram

4-38
313-C

D
-006-002

CallingObject
DsClRequest DsClCommand

GlParameter
GlParameterList GlCallbackDsClESDTReferenceCollector

(DsClCommand)

(DsClESDTCollector &): GlStatusAsk the request to insert itself
into the collector and submit itself

After synchronous return, SDSRV acts as CallingObject in SP3A.

(string)

(service:string="Insert")

(string="datatype",string)

(string="datafile",fname:string)

(GlParameter)

(GlParameter)

insert additional parameters

create parameter list and insert one parameter

(GlParameterList)

After SP3A is complete, the specified
GlCallback is called

(dataserver:GlUR&,GlClient&)

(GlCallback&)

SetCategory()

SetServiceName()

ctor()

ctor()

ctor()

Insert()

SetParameters()

ctor()

ctor()

Submit()

invoke()

ctor()

ctor()

setStatusCallback()

Figure 4-11. INSERT_DATA_SP12 Diagram

4-39 313-CD-006-002

 4.2.13 V0_GATEWAY_INVENTORY_SP16

This scenario (see Figure 4-12) describes a V0 Inventory Search Request being processed by the
Gateway Subsystem at a single site. The Gateway transforms the request to the ECS protocol and
does mapping of V0 attribute names and parameter names to ECS attribute names and parameter
names. It then forwards the search request to the SDSRV. SDSRV processes the inventory search
and returns the granule product information to Gateway. Gateway then transforms the result to V0
protocol and does mapping of ECS attribute names and parameter names to V0 attribute names and
parameter names. The result information is then forwarded to the V0 client.

1. When the V0ServerFrontEnd receives a Inventory Search Request from the V0 IMS
System, it constructs the DmGwInvRequests object with Inventory Request ODL Tree as
the argument.

2. The V0ServerFrontEnd then invokes Submit operation of the DmGwInvRequests object.

3. DmGwInvRequests object will extract the V0 requested information from the ODL Tree.

4. The object requests the DmGwV0ECSMapper to perform translation from V0 attribute
names and parameter names to the ECS correspondence.

5. The object then creates the DmGwInvQuery object which is a derived class from the proxy
class DsClInvQuery imported from SDSRV.

6. DmGwInvQuery is constructed with the requested inventory search information.

7. DmGwInvRequests object then constructs the DmGwInvSearchRequest object which is a
derived class from the proxy class DsClESDTReferenceCollector imported from SDSRV.

8. The object then invokes the Submit operation of the DmGwInvSearchRequest object to
forward the request to the SDSRV for processing.

9. The operation InvSearchComplete of the DmGwInvSearchRequest will be then invoked if
the SDSRV completes the search request successfully.

10. DmGwInvRequests object will retrieve in sequence the return granule results from the
DmGwInvESDTReference object which is a derived class from the proxy class
DsClESDTReference.

11. Then the object will request the DmGwV0ECSMapper to perform translation from ECS
attribute names and parameter names to the V0 correspondence.

12. The ODL Tree for the search result will then be shipped by the V0ServerBackEnd to the
V0 IMS System.

GlCallback is not implemented as an object but implmented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

NOTE: An ODL Tree is the data structure used by the V0 kernel library to pass ODL (Object
Definition Language) across the network.

4-40
313-C

D
-006-002

CallingObject V0ServerFrontEndV0ServerBackEnd DmGwV0ECSMapper DmGwInvRequests DmGwInvSearchRequest DmGwInvQuery DmGwInvESDTReference

Science
Data

Server

socket(ODL)

ctor(InventoryRequestODLTree)

submit()

DmGwV0ToECSMapping()

ctor()

submit()

ctor()

Forward(DmGwInvQuery)

InvSearchComplete(DmGwInvESDTReference)
queryComplete()

numberOfInvESDTRefs()

getFirstInvESDTRef()

getBrowse()

getDayNight()

getStartDate()

getEndDate()

getSpatialExtent()

getUR()

getNextInvESDTRef()

getBrowse()

getDayNight()

getStartDate()

getEndDate()

getSpatialExtent()

getUR()

DmGwECSToV0Mapping()

Ship(InventoryResultODLTree)

Figure 4-12. V0_GATEWAY_INVENTORY_SP16 Diagram

4-41 313-CD-006-002

4.2.14 V0_GATEWAY_INTEGRATED_BROWSE_SP17a

This scenario (see Figure 4-13) describes a V0 Integrated Browse Search Request being processed
by the Gateway Subsystem at a single site. The Gateway transforms the request to the ECS protocol
and does mapping of V0 attribute names and parameter names to ECS attribute names and
parameter names. It then forwards the search request to the SDSRV. SDSRV processes the browse
search request and transmits the result information and browse image requested to the Gateway.
Gateway transforms the result to V0 protocol and does mapping of ECS attribute names and
parameter names to V0 attribute names and parameter names. The result information and the
browse image is then forwarded to the V0 client.

1. When the V0ServerFrontEnd receives an Integrated Browse Search Request from the V0
IMS System, it constructs the DmGwV0BrowseRequest object with Browse Request ODL
Tree as the argument.

2. The V0ServerFrontEnd then invokes Submit operation of the DmGwV0BrowseRequest
object.

3. DmGwV0BrowseRequest object will extract the V0 requested information from the ODL
Tree.

4. The object then requests the DmGwV0ECSMapper to perform translation from V0
attribute names and parameter names to the ECS correspondence.

5. The object creates the DmGwBrowseRequest object which is a derived class from the
proxy class DsClRequest imported from SDSRV.

6. The object then invokes the Submit operation of the DmGwBrowseRequest to forward the
request to the SDSRV for processing.

7. The operation BrowseComplete of the DmGwBrowse Request will be invoked if the
SDSRV completes the search request successfully.

8. DmGwV0BrowseRequest then requests the DmGwV0ECSMapper to perform translation
from ECS attribute names and parameter names to the V0 correspondence.

9. The ODL Tree for the search result and the Browse Image will then be shipped by the
V0ServerBackEnd to the V0 IMS System.

NOTE: An ODL Tree is the data structure used by the V0 kernel library to pass ODL (Object
Definition Language) across the network.

4-42
313-C

D
-006-002

CallingObject DmGwV0ECSMapperV0ServerBackEnd V0ServerFrontEnd

Science
Data

ServerDmGwBrowseRequestDmGwV0BrowseRequest

socket(ODL)

ctor(IntBrowseRequestODLTree)

submit()

DmGwV0ToECSMapping()

ctor()

submit()

Forward(BrowseUR)

BrowseComplete
(ImageStream)

browseRequestComplete
(ImageStream)

DmGwECSToV0Mapping()

Ship(IntBrowseResultODLTree)

Ship(ImageStream)

Figure 4-13. V0_GATEWAY_INTEGRATED_BROWSE_SP17a Diagram

4-43 313-CD-006-002

4.2.15 V0_GATEWAY_FTP_BROWSE_SP17b

This scenario (see Figure 4-14) describes a V0 FTP Browse Search Request being processed by the
Gateway Subsystem at a single site. The Gateway transforms the request to the ECS protocol and
does mapping of V0 attribute names and parameter names to ECS attribute names and parameter
names. It then forwards the search request to the SDSRV. SDSRV processes the browse search and
sends the confirmation response back to Gateway. Gateway then transforms the confirmation
response to V0 protocol and does mapping of ECS attribute names and parameter names to V0
attribute names and parameter names. The confirmation response will be forwarded to the V0
Client. SDSRV will stage the browse image product on its local disk, and sends the notification
containing the location of Browse product directly to user via e-mail. The V0 User retrieves the
Browse product via FTP.

1. When the V0ServerFrontEnd receives a FTP Browse Search Request from the V0 IMS
System, it constructs the DmGwV0BrowseRequest object with Browse Request ODL Tree
as the argument.

2. The V0ServerFrontEnd then invokes Submit operation of the DmGwV0BrowseRequest
object.

3. DmGwV0BrowseRequest object will extract the V0 requested information from the ODL
Tree.

4. The object then requests the DmGwV0ECSMapper to perform translation from V0
attribute names and parameter names to the ECS correspondence.

5. The object creates the DmGwAcquireRequest object which is a derived class from the
proxy class DsClRequest imported from SDSRV.

6. The object then invokes the Submit operation of the AcquireRequest to forward the request
to the SDSRV for processing.

7. The operation AcquireComplete of the DmGwAcquireRequest will be invoked if the
SDSRV confirms the search request successfully.

8. DmGwV0BrowseRequest object requests the DmGwV0ECSMapper to perform
translation from ECS attribute names and parameter names to the V0 correspondence.

9. The ODL Tree for the confirmation response will then be shipped by the V0ServerBackEnd
to the V0 IMS System.

10. SDSRV will stage the Browse Image on its local disk, and sends the notification containing
the location of Browse product directly to user via e-mail.

11. The V0 User retrieves the Browse Image via a FTP.

NOTE: An ODL Tree is the data structure used by the V0 kernel library to pass ODL (Object
Definition Language) across the network.

4-44
313-C

D
-006-002

DmGwV0ECSMapperV0ServerBackEnd V0ServerFrontEnd

Science
Data

ServerDmGwBrowseRequestDmGwV0BrowseRequest BrowseImageCallingObject

ctor(FTPBrowseRequestODLTree)

submit()

DmGwV0ToECSMapping()

ctor()

submit()

forward(BrowseUR)

AcquireCompleted
(Confirmation)

browseRequestComplete
(Confirmation)

DmGwECSToV0Mapping()

ship(FTPBrowseResultODLTree)

EmailNotification(FTPAccountInformation)

FTPRetrieval()

socket(ODL)

Figure 4-14. V0_GATEWAY_FTP_BROWSE_SP17b Diagram

4-45 313-CD-006-002

4.2.16 V0_GATEWAY_ORDERING_SP18

This scenario (see Figure 4-15) describes a V0 Product Ordering Request being processed by the
Gateway Subsystem at a single site. The Gateway transforms the request to the ECS protocol and
does mapping of V0 attribute names and parameter names to ECS attribute names and parameter
names. It then forwards the search request to the SDSRV. SDSRV processes the product ordering
request and sends the acceptance response back to Gateway. Gateway then transforms the
acceptance result to V0 protocol and does mapping of ECS attribute names and parameter names
to V0 attribute names and parameter names. The acceptance response will be forwarded to the V0
client. SDSRV will then dispatch the ordered product to the Distribution Server for product
distribution.

1. When the V0ServerFrontEnd receives a Product Ordering Search Request from the V0
IMS System, it constructs the DmGwProductRequest object with the Product Ordering
Request ODL Tree as argument.

2. The V0ServerFrontEnd then invokes Submit operation of the DmGwProductRequest
object.

3. DmGwProductRequest object extracts the V0 requested information from the ODL Tree.

4. The object then requests the DmGwV0ECSMapper to perform translation from V0
attribute names and parameter names to the ECS correspondence.

5. The object then creates the DmGwDistribution object which will contain all the media
format information.

6. The object retrieves the media format information for the requested product from the
DmGwDistribution object.

7. DmGwProductRequest object then constructs the DmGwAcquireRequest object which is
a derived class from the proxy class DsClRequest imported from SDSRV.

8. The object then invokes the Submit operation of the DmGwAcquireRequest to forward the
request to the SDSRV for processing.

9. The operation AcquireComplete of the DmGwAcquireRequest will be then invoked if the
SDSRV accepts the search request successfully.

10. DmGwProductRequest will request the DmGwV0ECSMapper to perform translation from
ECS attribute names and parameter names to the V0 correspondence.

11. The ODL Tree for the Acceptance Response will then be shipped by the V0ServerBackEnd
to the V0 IMS System.

12. The Data Server will then dispatch the products ordered to the Distribution Server for
product distribution to the V0 User.

NOTE: An ODL Tree is the data structure used by the V0 kernel library to pass ODL (Object
Definition Language) across the network.

4-46
313-C

D
-006-002

DmGwV0ECSMapperV0ServerBackEnd V0ServerFrontEnd

Science
Data

ServerDmGwAcquireRequestDmGwProductRequest DmGwDistributionCallingObject

ctor(ProductRequestODLTree)

submit()

DmGwV0ToECSMapping()

ctor()

numOfMediaInfo()

getFirstMediaInfo()

getNextMediaInfo()

submit()

ctor()

Forward(DmGwMediaInfo)

AcquireComplete
(Acceptance)

ProductRequestComplete
(Acceptance)

DmGwECSToV0Mapping()

Ship(ProductResultODLTree)

DataDistribution()

socket(ODL)

Figure 4-15. V0_GATEWAY_ORDERING_SP18 Diagram

4-47 313-CD-006-002

4.2.17 V0_GATEWAY_DIRECTORY_SP19

This scenario (see Figure 4-16) describes a V0 Directory Search Request being processed by the
Gateway Subsystem at a single site. The Gateway transforms the request to the ECS format and
does mapping of V0 attribute names and parameter names to ECS attibute names and parameter
names. It performs a search on the Gateway database to retrieve the corresponding GCMD Entry
Id. The Gateway then transforms the results to the V0 protocol and does mapping of ECS attribute
names and parameter names to V0 attribute names and parameter names. The directory
information then is forwarded to the V0 IMS System.

1. When the V0ServerFrontEnd receives a Directory Search Request from the V0 IMS
System, it constructs the DmGwDirectoryRequest object with Directory Request ODL
Tree as the argument.

2. The V0ServerFrontEnd then invoke Submit operation of the DmGwDirectoryRequest.

3. DmGwDirectoryRequest object extracts the V0 request information from the ODL Tree.

4. The object will request the DmGwV0ECSMapper to perform translation from V0 attribute
names and parameter names to the ECS correspondence.

5. The object then performs a directory search on the Gateway database to retrieve the
corresponding GCMD Entry Id.

6. Then the object will request the DmGwV0ECSMapper to perform translation from ECS
attribute names and parameter names to the V0 correspondence.

7. The ODL Tree for the search result will then be shipped by the V0ServerBackEnd to the
V0 IMS System.

NOTE: An ODL Tree is the data structure used by the V0 kernel library to pass ODL (Object
Definition Language) across the network.

4-48
313-C

D
-006-002

CallingObject V0ServerBackEnd V0ServerFrontEnd DmGwV0ECSMapper DmGwDirectoryRequest GatewayDataBase

ctor(DirectoryRequestODLTree)

submit()

DmGwV0ToECSMapping()

DirSearch()

DmGwECSToV0Mapping()

Ship(DirectoryResultODLTree)

return(DiffEntryId)

socket(ODL)

Figure 4-16. V0_GATEWAY_DiIRECTORY_SP19 Diagram

4-49 313-CD-006-002

4.2.18 DDSRV_ACQUIRE_SP20

The DDSRV provides storage for its documents and document metadata, and performs the on-line
distribution of documents to its HTTP clients.

In this scenario (see Figure 4-17), the client has already located the document of interest, and is
requesting distribution of a Data Center Guide document via on-line HTTP connection from an
interactive client capable of viewing HTML documents.

4.2.19 PLANG_ACTIVATE_PLAN_SP25

This scenario (see Figure 4-18) shows how a plan is activated within PLANG. The scenario
involves two CSCIs: PLANG, which requests that the plan be activated; and PRONG, which
accepts the request. It also involves Operations personnel. A Production Planner (human) selects a
plan from a graphical user interface, and then activates the plan through a menu selection
(ActivateSchedule). As a result of this action, PLANG undergoes a number of internal steps,
culminating in a call to an instance of DpPrScheduler, which is constructed upon initialization.
The call to DpPrScheduler is to create a DprJob, and a reference to the PlDpr object is passed as
an argument. PRONG returns control synchronously back to PLANG and then begins to effect the
plan activation.

4.2.20 PRONG_RCV_JOB_SP26

This scenario (see Figure 4-19) shows how PLANG releases a DPR to PRONG for processing,
indicating that all necessary input data is available for staging. The scenario involves two CSCIs:
PLANG, which releases the DPR; and PRONG, which processes it. The purpose of the scenario is
to detail the inter-CSCI interactions. Therefore, steps which are internal to a CSCI are summarized
through textual comments on the Event Trace Diagram that corresponds to the scenario. This
scenario assumes that the PlDpr instance being released has already been submitted to PRONG by
PLANG.

The interface with PRONG is through an instance of the PRONG class, DpPrScheduler, which is
constructed upon initiation. PLANG asks the instance of DpPrScheduler to release a DprJob,
providing a reference to the corresponding PlDpr instance as an argument to the call.

4-50
313-C

D
-006-002

V0 Client Calling Object DsSvClient DsCtCommandGLParameterGLParameterListDsCtRequest
DsCtAcquire
Command DsEsESDT DsCdCSDTDsSvserver

HTTP Get
Request

SubmitAcquire()
CGI Call

DsCtCommand

SetCatagory

SetServicename("Acquire")

GL Parameter("httprequest", httprequeststring)

GLParameterList("GLParameter")

Insert(GLParameter)

Set Parameter*Gl Parameter List)

DsCtRequest

SubmitRequest(DsCtRequest)

executerequest(stream)

ExecuteCommand(ostream)

DsCtAcquireCommand(cstream)

DsEsESDT()

DsCdCSDT()

Retreive Document()

Externalize()

Extract()

GL Status

GL Status

GL Status

GLStatus

GL Status

GL Status

HTTP Header +
Body

HTTP

Figure 4-17. DDSRV_ACQUIRE_SP20 Diagram

4-51
313-C

D
-006-002

PlActivePlan PlActivities PlGroundEvent PlDPRB DpPrSchedulerPlActivity
PlPlanningWorkbenchUI

ctor*(

Schedule()

CreateDPRJob(PlDPR &)

Schedule

CreateGroundEvent(PlGroundEvent &)

Next()

Schedule()

PlActivePlan

UpdatePlan

ActivateSchedule

ctor()

ctor()

ctor()

ctor()

Figure 4-18. PLANG_ACTIVATE_PLAN_SP25 Diagram

4-52
313-C

D
-006-002

PlActivePlan PlDPRB DpPrSchedulerPlActivities PlActivity

ctor()

ReleaseDPRJob(PlDPR &)

ctor()

ctor()

ctor()

return()

Figure 4-19. PRONG_RCV_JOB_SP26 Diagram

4-53 313-CD-006-002

4.2.21 BROWSE_SP29

This scenario primitive (see Figure 4-20) demonstrates the public interface provided by SDSRV to
perform a browse image retrieval. This also represents a specific use of the SDSRV's command
and request interface. The scenario assumes that the user has already selected an advertisement that
is linked to a particular browse image. The selected advertisement contains information about the
browse image which is required by SDSRV to perform the retrieval. The calling object constructs
a browse command (DsClCommand) which consumes the information provided by the
advertisement.

The browse command is passed to the SDSRV in the form of a request (DsClRequest). The calling
object invokes the request's SetCallback() operation to specify the callback function that will be
executed when the browse image retrieval is complete. The request is started via the Submit()
operation.

The mechanics of the retrieval are internal to SDSRV. The ECS callback key mechanism is used
to invoke the calling object's function when the query has completed. A typical callback function
in this scenario will extract the browse image by first invoking the request object's GetResults()
operation. GetResults() returns an instance of GlParameterList which is derived from a standard
container class. In this case, the GlParameterList is nested and contains GlParameterLists, one for
each command in the request (one command in this case). Given this structure, the first at(0)
returns the results of the command. An at(0) call to the nested list extracts a reference to the browse
image. This is in the form of a parameter type GlBinaryP, which is a derived class of GlParameter.
The parameter value() method of GlBinaryP returns a char * which contains the address of the
browse image. Note that there could be several parameters in this list which contain other
information about the browse image. For example, the list could also contain the UR of the ESDT
from which the browse image and the size of the browse image reside.

GlCallback is not implemented as an object but implemented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

4-54
313-C

D
-006-002

CallingObject DsGlCommandGlCallback DSClESDTReferenceCollector
GlBinaryP

GlParameterList

Create callback using KM

Callback is invoked using KM

SDSRV executes browse request
and retrieves browse image

GetResults returns a GlParameterList whose first element
is also a GlParameterList (of GlBinaryP in this case). Each
instance of GlBinaryP contains a pointer to a browse image.

DsClRequest

ctor(SDSRV:GlUR,Client:GlClient(ClientName:String))

ctor()

ctor(“Browse”,Advertisement data...)

ctor(Command:DsClCommand)

SetStatusCallback(Callback:GlCallback)

Submit()

Invoke()

dtor()

GetStatus()

GetResults():GlParameterList

dtor()

at(0):GlParameterList

at(0):GlBinaryP

char * BrowseImage = value():char *

Figure 4-20. BROWSE_SP29 Diagram

4-55 313-CD-006-002

4.2.22 INGEST_GATEWAY_INTERFACE_SP45

This scenario primitive (see Figure 4-21) shows the interface between The Ingest Server CSCI
(INGST) and the gateway used to facilitate communications with all external data providers. The
gateway communicates with external systems via TCP/IP sockets and with INGST via DCE RPCs.

The scenario primitive assumes that the InServer object has already been instantiated as part of the
INGST start up procedure. In addition, the external data provider has initiated an ingest session,
and completed a successful ECS login.

Once an external data provider has been authenticated, the Ingest Gateway uses its CreateSession()
RPC to the Ingest Server to create an Ingest Session process. The Ingest Server then sends the
InitSession() RPC to the Ingest Session process to create an instance of IngestSession.

The external data provider next sends a Data Availability Notice (DAN) to the gateway which is
translated to an extDAN() RPC call to IngestSession. The Ingest Session acknowledges the DAN
by sending a Data Availability Acknowledge message back to the gateway who in turn sends it on
to the external data provider. The receipt of the DAN triggers a number of events internal to
INGST. During this process, an instance of InResourceIF is created including the instance of an
InRequestObject based on the DAN contents. InRequest creates an instance of InResourceIf which
in turn creates an instance of DsStStagingDisk (see SP 4 for details) and DsStResourceProvider to
allocate resources for both staging and network access. InDataTransferTask sends a message to the
DsStResourceProvider copy utility to issue a CSS ftp get request.

Once successfully transferred Ingest preprocesses the data (see SP 2 for details) and sends a request
to SDSRV to Archive the processed data (see SP 12 for details).

InRequest then controls the creation of DDN (data delivery notice) message which is transferred
via InSession to the CSGateway. The gateway forwards this message to the external provider
which sends a Data Delivery Acknowledge (DDA) message back to the gateway which forwards
the DDA to the Ingest Session process via the extDDA() RPC. This causes the Ingest Session
process to terminate the current session.

4-56
313-C

D
-006-002

CsGateWayExternalDataProvider InServer InSession InRequest InResourceIF InDataTransferTaskDsStagingDisk DsStResourceProvider

Establish Session

CreateSession

InitSession

CreateRequest

GetResource

Ctor

Get
ftpGet

SendDDN

SendDDA

DAN Socket Call SendDAN

SendDAADAA Socket Call

Ctor

DDN Socket Call

DDA Socket Call

Figure 4-21. INGEST_GATEWAY_INTERFACE_SP45 Diagram

4-57 313-CD-006-002

4.2.23 DDSRV_INSERT_SP46

This scenario illustrates the classes and events which interact to insert a document and its metadata
into the DDSRV (see Figure 4-22). The Ingest subsystem performs metadata extraction and range
checking in a manner analogous to that for science data, presenting the DDSRV with the document
data file and its metadata file. The DDSRV then uses the DBMS Wrappers to index the document
from its metadata file keywords. In addition, the DDSRV performs full text indexing for those
document types which have a free text search defined for its ESDT. After the document has been
inserted into the DDSRV a status indicating a successful insert request is returned to the Ingest
Subsystem, and the document is ready for searching.

In this scenario, the DDSRV will be ingesting a Data Center Guide document
(DsDoDataCenterGuide). The Ingest Subsystem has received a Data Center Guide document in
HTML format, from its client interface. The Ingest Subsystem has extracted keywords from the
document, performed range checking of the keywords using metadata configuration information,
and has produced a parameter value list file (PVL) containing the document keywords. The Ingest
Subsystem has established a connection with the DDSRV to complete the insertion of the HTML
document, and its keyword and free text indexing.

4.2.24 DDSRV_SEARCH_SP47

The DDSRV provides both a free text index and keyword index on its document holdings. The
keyword index uses parameter names and values consistent with the ESDT metadata stored in the
SDSRV; the free text index is performed by a COTS product. Keyword integrity between the data
designs of the DDSRV and the SDSRV facilitates navigation between the various layers of the data
pyramid. The scenario ends with the presentation of an HTML formatted results list of references
to documents which meet the search criteria. Each document reference in the results list is
presented as a hyperlink in the HTML page, and points to the relevant document that is stored in
the DDSRV.

In this scenario (see Figure 4-23), the client is requesting both a free text search and a keyword
search for Data Center Guide documents. The client has formulated the query in WAIS from an
interactive client capable of viewing HTML documents.

4-58
313-C

D
-006-002

DsCtRequest
DsCtClient

DsCsHTML
DsMdMetadata

DsSeIndexerDsEsGuide DsMdMetaCatalog

INGEST

DsCtCommand GLParameter
GLParameterList DsSvServer

DsCtCommand()

SetCatagory()

SetServiceName("Insert")

GLParameter("datatype","DsDoDataCenterGuide")

GLParameter("metafile",fname)

GLParameterList(GlParameter)

Insert(GLParamter)

Insert(GLParamter)

SetParameters(GLParameterList)
DsCtRequest(DsCtCommand)

Submitrequest(DsCtRequest)
SubmitRequest()

GetCommand(DsCtRequest)

DsCtCommand *

ExecuteCommand()

DsEsGuide("DsDpDataCenterGuide")

Internalize() DsCsHTML(DsCsCSDT_Type)

DsMdMetadata("DsDoDataCenterGuide")

LoadFromExternal(char *)

DsMdCatalog()

Initialize()

InsertDocumentMetadata(DsTmdidentifier,DsMdMetadata *)

GLStatus

Insert()
IndexDocument

COTS Status

GLStatus, DsTmdIdentifier

GLStatus, DsTmdIdentifier

GLStatus, DsTmdIdentifier

Figure 4-22. DDSRV_INSERT_SP46 Diagram

4-59
313-C

D
-006-002

Calling Object GLParameterDsCtCommand GLParameterList DsCtRequestV0Client DsSvClient DsSvServer DsCtSearchCommand DsMdCatalog DsSeIndexer

WAIS Query

SubmitSearch()
CGI Call

ctor()

SetCatagory()

setServiceName("Search")

ctor("datatype","DsDoDataCenterGuide")

ctor("waisquery",waisquerystring)

ctor()

Insert(GLParameter)

SetParameters(GLParameterList)

ctor(DsCtCommand)

SubmitRequest(DsCtRequest)

ExecuteRequest(ostream)

ExecuteCommand(ostream)

DsCtSearchCommand(waisquery)

ExecuteSearch(ostream) ExecuteKeywordSearch()

GLParameter("DataCenter",DAAC)

GLParameterList(GLParameter *)

Documentsearch()

KeywordresultsList, GLStatus

ExecuteFreeTextSearch

FullTextQuery()

FreeTextResultsList

Mergeresults()

FormatResults()

GLStatus

GLStatus

GLStatus

GLStatus

HTML ResultsSet

HTML Results

Figure 4-23. DDSRV_SEARCH_SP47 Diagram

4-60 313-CD-006-002

4.2.25 RETRIEVE_SERVICE_UR_SP48_B

The event trace diagram (see Figure 4-24), illustrates how an application accesses the ADSRV to
obtain the service URs for the SDSRVs involved in the information request.

The calling object (some object in the requesting CSCIs calling space) initiates a search for
products by creating a IoAdProductSearchCommand object. Next, the calling object specifies the
MatchType and the SearchByTitle to the IoAdProductSearchCommand object as the search
criterion. For example, if the MatchType is “Exact” and the SearchByTitle is “CERES02”, then
the IoAdProductSearchCommand object will return all products whose name is CERES02. The
IoAdProductSearchCommand then creates a IoAdProductList object to append found Product
advertisements to the current results set. Then, the calling object again calls the
IoProductSearchCommand object with an operation GetResult to return the matched Product
advertisements. The IoAdProduct object creates a IoAdProvider object, which retrieves the
provider for the products found. The calling object then calls the IoAdProductList object with the
Entries and Operator operations to iterate through the products and providers and to advance the
iterator to check if a certain product is at the current DAAC. To get all the services for this product,
the calling object then calls the IoAdServiceReferenceListIter to iterate through the services. While
iterating, the Key operation of the IoAdServiceReferenceListIter object returns the current service
ad, and the calling object then calls the IoAdService object with the GetTitle operation to check if
this service ad is the Data Server Service, and its UR is then returned to the calling object.

4.2.26 SUBMIT_OPR_SP49_B

This scenario primitive (see Figure 4-25) shows how an on demand processing request (OPR) is
submitted. This scenario involves three CSCIs: the calling CSCI (e.g. SDSRV); PLANG which
validates the OPR; and SDSRV which searches for the input data (see the SDSRV_QUERY_SP9
scenario primitive scenario).

An OPR object is created by the calling object. The calling object initializes the appropriate
instance variables when the OPR object is instantiated. The calling object asks PLANG to validate
the OPR object by invoking the validate method. PLANG directs SDSRV to search for input data
(see the SDSRV_QUERY_SP9 scenario primitive scenario). PLANG returns status to the calling
object by initializing the appropriate instance variables accordingly (see the
CALLBACK_SP50_B primitive scenario).

4.2.27 CALLBACK_SP50_B

This scenario primitive (see Figure 4-26) shows a generic mechanism for a calling object to be
called back by a server object. An instance variable of a callback object is created. The calling
object specifies a callback object to the server object so that the calling object can be notified of
the request completion. The calling object submits the request. Sometime later, the calling object's
callback is invoked upon search completion.

GlCallback is not implemented as an object but impelmented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

4-61
313-C

D
-006-002

CallingObject IoAdProductListIoAdProductSearchCommand IoAdProduct IoAdServiceReferenceListIterIoAdProvider IoAdService

Calling object iterates through
the services until the required

service is located.

Calling object iterates through
the products and providers until

the required one is located.

Ctor
Ctor

SetMatchType
SearchByTitle

Ctor
Ctor

Append()
GetResult(void)

Entries(void) : int
Operator[]: IoAdProduct

GetProvider:IoAdProvider

ServiceIter(void) : IoAdServiceReferenceListIter
Ctor

Key:IoAdService
Ctor

GetTitle(void) : RWCString
GetUR(void) : EcUrUR

GetTitle(void) : RWCString

Figure 4-24. RETRIEVE_SERVICE_UR_SP48 Diagram

4-62
313-C

D
-006-002

CallingObject
PlOnDemandPRNB PlDPRB SDSRV

Parameters: String ReqId,
Time Start, Time Stop,

String OutData, String PGEId,
String ReqerId, List ParamID,

List ParamVal, Int Prior

DpPrSchedulerPlRescUseThreshNB

PlOnDemandPRNB(Parameters)

Reuse of SDSRV_QUERY_SP9
(Search for input data)

PlDPR(int DPRId) from PlPGE

ValidateOPR():String

CheckThresholds()

ReleaseDprJob()
ValidateOPR():String

CreateDprJob()

Figure 4-25. SUBMIT_OPR_SP49_B

4-63 313-CD-006-002

Figure 4-26. CALLBACK_SP50_B

4.2.28 DDICT_QUERY_SP51_B

This scenario primitive (see Figure 4-27) shows how the data dictionary is queried by a client. This
scenario primitive involves two CSCIs: A requesting CSCI (Release B Client) and DDICT, which
provides locations to which queries can be sent.

The calling object initiates a session with the DDICT by creating a DmDdRequestServer_C object.
The DmDdRequestServer_C object is a synchronous session object which establishes a connection
to a server side object DmDdRequestServer_S. The calling object calls the NewSearchRequest
operation of DmDdRequestServer_C. The EcCsMsgHandler object of the Server Request
Framework (SRF) creates a DmDdSearchRequest_C object upon notification that the correlated
server side object has been created. The DmDdSearchRequest_C object is an asynchronous object
that inherits from the SRF. The client must supply a callback function that will be called to inform
the client of status from the server. When the client detects through the status parameter that the
request is complete, the client will request a pointer to the result set using the GetResultSet
operation of the DmDdSearchRequest_C object. The client will then interact with the
DmDdResultSet operation to retrieve references to the results.

CallingObject GlCallback Proxy

ctor()

setCallback()

invoke()

invoke()

4-64
313-C

D
-006-002

calling object DmDdRequestServer_C DmDdSearchRequest_C DmDdResulSet

Create a session to the DDICT
server and start a new search

request

The callback function supplied by the
client will be used to return status

of the search.

StateChange is called everytime the
server sends status. The

client is informed through the
callback function.

When the client determines the search
is complete, the results can be retrieved.

ctor(myUser : MSSUserProfile, myServer : EcUrUR)

NewSearchRequest : DmDdSearchRequest_C *

SetCallback(callbackFunction : DmImClCallback)

SubmitSearch(searchString : RWCString)

StateChange()

(callbackFunction) (request : DmDdSearchRequest_C *, status : EcUtStatus)

GetResultSet() : DmDdResultSet *

ctor

GetFirst() : DmDdReference *

Figure 4-27. DDICT_QUERY_SP51_B

4-65 313-CD-006-002

4.2.29 DIMGR_QUERY_SUBMISSION_SP52_B

This scenario primitive (see Figure 4-28) shows how a client submits a search request to the
DIMGR. This scenario primitive involves two CSCIs: A requesting CSCI (Release B Client) and
DIMGR.

The calling object (some object in the requesting CSCIs calling space) initiates a session with the
DIMGR by creating a DmImClRequestServer object. The DmImClRequestServer object is a
generic request factory object which establishes a connection to a server and instantiates a server-
side request factory object. The server connection is established to the server with the UR specified
in the constructor. The calling object initiates the creation of a new request by using the method
NewRequest from the DmImClRequestServer object. The DmImClRequest object is then created
using the callback principle of the Session Request Framework (SRF). The Calling Object
populates the DmImClRequest with the search constraints. The calling object must specify a
callback function to the request object so that the calling object can be notified of the completion
of the request. Lastly, the calling object submits the request.

4.2.30 DIMGR_RESULT_RETRIEVAL_SP54_B

This scenario primitive (see Figure 4-29) shows how the Client retrieves data from the DIMGR,
after the DIMGR has merged data results from the SDSRVs involved.

This scenario assumes that the following preconditions exist:

1. The server was constructed

2. A search request was initiated

3. A callback was set by the calling object

4. A search was submitted

When the search is complete, the following is what happens when the search is complete:

The calling object's callback is invoked upon completion of the data search. The calling object then
specifies the range of results it can accommodate and retrieves the results specified from the
DmImClRequest object. For example, the client can specify that it wants results 1 through 100
returned to reduce the amount of data being returned to the user. The return type is a
GlParameterList that contains the attributes as requested in the query.

4.2.31 INSPECT_GRANULE_VALUE_PARAMETERS_SP55_1B

This scenario primitive (see Figure 4-30) shows one way SDSRV client applications can use the
public SDSRV interface to get the value of parameters of a granule. This assumes that the client
application has connected to the SDSRV and completed a search for granules. First the client
application goes to the first granule in its list. Then it needs to build a GlParameterList of all the
parameters that it wants values for. In this example we are assuming that the client is interested in
the Sensor of the granules. Once the list of parameters of interest is built, the list is given to the
Inspect service of the granule of interest. The list of parameters will be populated for the client
application. Then the client application can simply get the values of the parameters. This sequence
can easily be repeated for all granules in the DsClESDTReferenceCollector, as the
DsClESDTReferenceCollector uses the RogueWave Collectable interface.

4-66
313-C

D
-006-002

Caller DmImClRequestServer DmImClRequest

Caller Is Connecting to 'server'
by constructing the DmImClRequestServer

Caller is passing search constraints
to the DmImClRequest

Caller sets callback function in order
to be notified when request is complete

Caller submits request

DmImClRequestServer
(user:MSSUserprofile &,

server :EcURUR)

NewRequest(newrequest DmImClRequest*,
newRequestType :RequestType)

SetSearchConstraints(Constraints :RWCString)

SetCallBack(callFunction : DmImCallBack*)

submit()

Figure 4-28. DIMGR_QUERY_SUBMISSION_SP52_B_B

4-67
313-C

D
-006-002

Caller
DmImClRequestServer DmImClRequest

When completed the request object uses the CallFunction
to notify the calling object.

Caller specified the start and end points of the result set
and gets the results returned as a GlparameterList.

GetResults(startpoint :int, endpoint :int) : GlParameterList

CallFunction(request:EcUrUr,state :enum)

Figure 4-29. DIMGR_RESULT_RETRIEVAL_SP54_SP54_B

4-68 313-CD-006-002

Figure 4.-30. INSPECT_GRANULE_VALUE_PARAMETERS_SP55_1B Diagram

4.2.32 INSPECT_GRANULE_UR_SP55_2B

This scenario primitive shows how a SDSRV client application can get the UR of a granule from
a DsClESDTReference object. This assumes that the client application has connected to the
SDSRV and has the DsClESDTReference object in its collection. The SDSRV client first gets to
the granule of interest, in this case assumed to be the first one on the list. Then the GetUr method
will return a reference to the GranuleUr, which is derived from the base UR Infrastructure.

Figure 4-31. INSPECT_GRANULE_UR_SP55_2B Diagram

CallingObject DsClESDTReferenceCollector DsClESDTReference GlStringP GlParameterList

first()

ctor("Sensor")

Inspect(GlStringP)

ctor()

Value()

Inspect(GlParameterList)

CallingObject DsClESDTReferenceCollector DsClESDTReference

GetUr()

first()

4-69 313-CD-006-002

4.2.33 ACQUIRE_DATA_WITH_UR_SP56_B

This scenario (see Figure 4-32) shows how a request is made to acquire data from the SDSRV. The
scenario involves two CSCIs: the requesting CSCI (the owner of the CallingObject); and SDSRV,
which provides the data.

The main interface with SDSRV is through an instance of the SDSRV distributed class,
DsClESDTReference, which has been provided the identity of a GlCallback instance to be called
upon completion of the request. An instance of DsClRequest, which is imported but not distributed,
is created and one or more instances of DsClCommand are inserted into it. Into each
DsClCommand object is inserted a list of parameters which define the data to be acquired, and an
attribute of DsClCommand is set to indicate that it is an “Acquire” command. The calling object
then asks each request to submit itself. Each DsClRequest instance then inserts itself into the
DsClESDTReference instance, which then submits the requests to SDSRV. The requesting CSCI
continues after making this synchronous call. Later, SDSRV notifies the requesting CSCI of the
completion status by calling the invoke operation on the specified GlCallback instance. The call to
GlCallback is a local call from a distributed SDSRV object.

GlCallback is not implemented as an object but implemented as a typedef called
DsTClRequestCallback that is a function pointer to an entry point in the client application.

4.2.34 INGEST_ADSRV_INTERFACE_SP57_B

The following scenario primitive (see Figure 4-33) provides an overview for how the Ingest
subsystem populates the Ingest data type data base with service universal references (URs) for the
distributed SDSRV and STMGT services assigned to the archive all valid Ingest data type (i.e.
CERES02).

Once populated the data type template information will be accessed by Ingest Data Server Insertion
software (see General Data Ingest scenario section 4.1.5), and used to send resource allocation
requests to STMGT and data archive requests to SDSRV.

The Ingest operator initiates this processing by selecting the appropriate GUI option from the
Monitor and Control GUI screen. This instantiates a GUI session which executes an InDBAccess
operation.

The InDBAccess function extracts each ingest data type defined in InDataType template to
IoAdProduct Search command to get corresponding SDSRV and STMGT URs.

4-70
313-C

D
-006-002

CallingObject DsClESDTReference DsClRequest DsClCommand GlParameterList GlParameter
GlCallback

(granuleUR:GlUR&, GlClient&)

(DsClCommand)

(DsClESDTReference &): GlStatus

The constructor places one
Acquire command in the request.

Ask the request to insert itself
into the collector and submit itself

(GlCallback &)

After synchronous return, SDSRV acts as CallingObject in SP3B.

(category:string="DDIST")

(service:string="Acquire")

(mediatype:string,string="electronicpull")

(GlParameter)
For each parameter...

(GlParameterList)

After completion of SP3, the
specified GLCallback is called

ctor()

SetCategory()

SetServiceName()

ctor()

ctor()

Insert()

SetParameter()

ctor()

ctor()

setStatusCallback)

Submit()

ctor()

invoke()

Figure 4-32. ACQUIRE_DATA_WITH_UR_SP56_B Diagram

4-71 313-CD-006-002

Figure 4-33. INGEST_ADSRV_INTERFACE_SP57_B Diagram

4.2.35 RETRIEVE_PRODUCT_PRC_SP58_B

This scenario (see Figure 4-34) shows how a price estimate for a request is made from SDSRV to
the MSS Billing and Accounting Application Service (BAAS). The scenario involves three
CSCIs: the requesting CSCI (the owner of the CallingObject); SDSRV, which provides the data
request identifying information; and CSMS, which provides the standard pricing information used
in generating an estimate for the SDSRV data acquire.

The calling object within SDSRV creates a request that represents a billable data product. If the
original request contains an acquire of multiple billable data products, the request is broken down
into subrequests that can be estimated based on an identifiable, priceable item and tracked by
requestId. In addition to an identifiable product, any services required to process the product, the
media type, number of media required to fufill the request and shipping method used, will be
required in a global parameter list, GlParameterList, in order to price the request accurately. The
price of the product request is then retrieved from the standard price table, EcPriceTableB, which
returns to the requesting object this price estimate by invoking the operation ProvidePrices().

4.2.36 VERIFY_AVAILABLE_FUNDS_SP59_B

This scenario (see Figure 4-35) shows how a science user's user profile balance is checked in
preparation for authorizing a data product request from SDSRV. After a price estimate for a request
is made from SDSRV to the MSS Billing and Accounting Application Service (BAAS), the user's
available balance will be checked and compared to the amount of the request estimate.

The scenario involves two CSCIs: the SDSRV, which provides the user identifying information
and the BAAS which provides the available user profile balance.

The calling object from SDSRV will request the available balance from a client instance of
MsAcUsrProfileMgr, given the requester's userId by retrieving the science user's profile. A
manager class for the user profile information is in place to ensure data integrity of sensitive
information. The client instance of MsAcUsrProfileMgr will request that the server profile
manager persistence instance get the science user's current account balance from the ECS
Management database. The server instance of MsAcUsrProfileMgr will send the user's available
balance to the client side which will populate (set) the account balance field in the current instance
of the MsAcUsrProfile class. The calling object from SDSRV will use the method
GetAccountBalance() with the current userId to retrieve the balance so that the available funds for
this user can be verified.

Operator
InGUISession InDBAccess InDataTypeTemplateIoAdProductSearchCommand

Ctor

UpdateUR

GetDataType

UpdateUR

GetUR

4-72
313-C

D
-006-002

Calling Object
SDSRV EcPriceTableBGIParameterList

ProvidePrices(userId, requestID, GlParameterList) : EcCurrency

ctor()

dtor()

Insert(requestId, userId, ProductId, ServiceId,
mediaType, numMedia, shipMethod)

Figure 4-34. RETRIEVE_PRODUCT_PRC_SP58_B Diagram

4-73
313-C

D
-006-002

Calling Object
SDSRV MsAcUsrProfile

MsAcUsrProfileMgr
(client side)

MsAcUsrProfileMgr
(server side)

RetrieveProfile(userId)

RetrieveProfile(userId)

ctor()

dtor()

ctor()

GetBalance(userId) from
ECS Management DB

SendProfile(userId)
to client side

SetAccountBalance(userId)
GetAccountBalance(userId)

dtor()

Figure 4-35. VERIFY_AVAILABLE_FUNDS_SP59_B Diagram

4-74 313-CD-006-002

4.2.37 UPDATE_USER_PROFILE_SP60_B

This scenario (see Figure 4-26) shows how a the science user's user profile balance is debited for
the amount authorized in a pending data product request that has already been priced by the MSS
Billing and Accounting Application Service (BAAS) and is ready to ship.

The scenario involves two CSCIs: SDSRV, which provides the user identifying information and
CSMS which provides the available user profile balance to determine if sufficient funds exist to
honor the completion and delivery of the request.

SDSRV submits a request to deduct the amount of a confirmed data product request from the
balance of the science user. This amount is submitted to the MSS accountability tracking manager
object, MsAcTrackingMgr. A client object instance of the MsAcProfileMgr is created which will
retrieve the user's profile information from a persistence instance of the user profile manager on
the server side. MsAcUsrProfileMgr (server) will get the balance from the ECS Management
database and return this information to the client side. An instance of the current user's profile will
be created, and then populated (set) by the MsAcUsrProfileMgr. Client/server object instances for
the MsAcProfileMgr are used to promote data integrity of user's sensitive information, such as their
account balance. The tracking manager, MsAcTrackingMgr then invokes the
GetAccountBalance() method with the current userId to get the recently populated
MsAcUsrProfile balance. A new balance is then calculated taking into account the price of the
request which was computed in Scenario Primitive SP 58B, Retrieve Product Price. The balance
in the MsAcUsrProfile is adjusted by invoking the method SetAccountBalance() by debiting the
amount of the product estimate, signaling to the SDRSV calling object that the request can be
honored.

4.2.38 SUBMIT_SERVICE_AD_SP61_B

This scenario primitive (see Figure 4-37) demonstrates how to advertise a service (i.e. how to
submit a Service advertisement to the ADSRV). This scenario primitive involves two CSCIs: a
requesting CSCI and ADSRV.

The calling object (some object in the requesting CSCIs calling space) creates an IoAdProvider
object, which acquires the provider for the service from the database. The calling object then
creates an IoAdContact object. The calling object calls the IoAdContact object to submit the
necessary information regarding the contact person or organization, such as last name, first name,
address, phone number, email, etc., who is responsible for this Service advertisement. The
provided information is then stored in the database. The calling object then creates an IoAdService
object. The calling object submits information, such as ServiceClass, ServiceName,
ServiceTypeId, to the IoAdService object. The calling object then calls the IoAdService object
again to store the provided information into the database. The Store method returns a status
describing whether the operation completed without error.

4-75
313-C

D
-006-002

Calling Object
SDSRV

MsAcUsrProfile
MsAcUsrProfileMgr

(server side)
MsAcUsrProfileMgr

(client side)MsAcTrackingMgr

ctor()

dtor()

ctor()

SetRequestInfo(orderStruct.State =
"Confirmed")

RetrieveProfile(userId)

RetrieveProfile(userId)

GetBalance(userId)
from ECS Managment DB

SendProfile(usedId)
to client side

SetAccountBalance(userId)

ctor()

new Balance = Account Balance - Price of Request

SetAccountBalance
(userId, newBalance)

dtor()

dtor()

GetAccountBalance(userId)

Figure 4-36. UPDATE_USER_PROFILE_SP60_B Diagram

4-76
313-C

D
-006-002

CallingObject IoAdServiceIoAdProvider IoAdContact

Continue this for all the service parameters

Ctor

Ctor

Ctor

SetValues(...)

Store()

SetContact(): IoAdProduct

SetServiceName(const char *)

SetServiceClass(const char *)

SetDescription(const char *)

Store(void)

Figure 4-37. SUBMIT_SERVICE_AD_SP61_B Diagram

	4. Interface Scenarios and Scenario Primitives
	4.1 Interface Scenarios
	4.1.1 Introduction
	4.1.2 Approach
	4.1.3 Scenarios Overview
	4.1.4 Scenario Description Tables
	4.1.5 Scenario 1 - General Data Ingest
	4.1.6 Scenario 2 - User Access
	4.1.7 Scenario 3 - Standard Production
	4.1.9 Scenario 4 - Cross-DAAC Search
	4.1.10 Scenario 6 - On-Demand Processing
	4.1.11 Scenario 7 - Data Acquisition Request Proce...
	4.1.12 Scenario 8 - Billing And Accounting
	4.1.13 FOS/SDPS Interfaces

	4.2 Interface Scenario Primitives
	4.2.1 L0_CHECK_SP2
	4.2.2 STMGT_STORE_SP3a
	4.2.3 STMGT_RETRIEVE_SP3b
	Figure 4-1. L0_CHECK_SP2 Diagram
	Figure 4-2. STMGT_STORE_SP3a Diagram
	Figure 4-3. STMGT_RETRIEVE_SP3b Diagram

	4.2.4 STMGT_STAGE_SP4
	Figure 4-4. STMGT_STAGE_SP4 Diagram

	4.2.5 DDIST_PULL_NOTAR_SP5a
	4.2.6 DDIST_TAPE_SP5b
	Figure 4-5. DDIST_PULL_NOTAR_SP5a Diagram
	Figure 4-6. DDIST_TAPE_SP5b Diagram

	4.2.7 SUBMIT_SUBSCRIPTION_SP7
	4.2.8 SUBCRIPTION_NOTIFICATION_SP8
	4.2.9 SDSRV_QUERY_SP9
	Figure 4-7. SUBMIT_SUBSCRIPTION_SP7 Diagram
	Figure 4-8. SUBSCRIPTION_NOTIFICATION_SP8 Diagram
	Figure 4-9. SDSRV_QUERY_SP9 Diagram

	4.2.10 ADVERTISING_SP10
	4.2.11 ACQUIRE_DATA_SP11
	4.2.12 INSERT_DATA_SP12
	Figure 4-10. ACQUIRE_DATA_SP11 Diagram
	Figure 4-11. INSERT_DATA_SP12 Diagram

	4.2.13 V0_GATEWAY_INVENTORY_SP16
	Figure 4-12. V0_GATEWAY_INVENTORY_SP16 Diagram

	4.2.14 V0_GATEWAY_INTEGRATED_BROWSE_SP17a
	Figure 4-13. V0_GATEWAY_INTEGRATED_BROWSE_SP17a Di...

	4.2.15 V0_GATEWAY_FTP_BROWSE_SP17b
	Figure 4-14. V0_GATEWAY_FTP_BROWSE_SP17b Diagram

	4.2.16 V0_GATEWAY_ORDERING_SP18
	Figure 4-15. V0_GATEWAY_ORDERING_SP18 Diagram

	4.2.17 V0_GATEWAY_DIRECTORY_SP19
	Figure 4-16. V0_GATEWAY_DiIRECTORY_SP19 Diagram

	4.2.18 DDSRV_ACQUIRE_SP20
	4.2.19 PLANG_ACTIVATE_PLAN_SP25
	4.2.20 PRONG_RCV_JOB_SP26
	Figure 4-17. DDSRV_ACQUIRE_SP20 Diagram
	Figure 4-18. PLANG_ACTIVATE_PLAN_SP25 Diagram
	Figure 4-19. PRONG_RCV_JOB_SP26 Diagram

	4.2.21 BROWSE_SP29
	Figure 4-20. BROWSE_SP29 Diagram

	4.2.22 INGEST_GATEWAY_INTERFACE_SP45
	Figure 4-21. INGEST_GATEWAY_INTERFACE_SP45 Diagram...

	4.2.23 DDSRV_INSERT_SP46
	4.2.24 DDSRV_SEARCH_SP47
	Figure 4-22. DDSRV_INSERT_SP46 Diagram
	Figure 4-23. DDSRV_SEARCH_SP47 Diagram

	4.2.25 RETRIEVE_SERVICE_UR_SP48_B
	4.2.26 SUBMIT_OPR_SP49_B
	4.2.27 CALLBACK_SP50_B
	Figure 4-24. RETRIEVE_SERVICE_UR_SP48 Diagram
	Figure 4-25. SUBMIT_OPR_SP49_B
	Figure 4-26. CALLBACK_SP50_B

	4.2.28 DDICT_QUERY_SP51_B
	Figure 4-27. DDICT_QUERY_SP51_B

	4.2.29 DIMGR_QUERY_SUBMISSION_SP52_B
	4.2.30 DIMGR_RESULT_RETRIEVAL_SP54_B
	4.2.31 INSPECT_GRANULE_VALUE_PARAMETERS_SP55_1B
	Figure 4-28. DIMGR_QUERY_SUBMISSION_SP52_B_B
	Figure 4-29. DIMGR_RESULT_RETRIEVAL_SP54_SP54_B
	Figure 4-30. INSPECT_GRANULE_VALUE_PARAMETERS_SP5...

	4.2.32 INSPECT_GRANULE_UR_SP55_2B
	Figure 4-31. INSPECT_GRANULE_UR_SP55_2B Diagram

	4.2.33 ACQUIRE_DATA_WITH_UR_SP56_B
	4.2.34 INGEST_ADSRV_INTERFACE_SP57_B
	Figure 4-32. ACQUIRE_DATA_WITH_UR_SP56_B Diagram
	Figure 4-33. INGEST_ADSRV_INTERFACE_SP57_B Diagram...

	4.2.35 RETRIEVE_PRODUCT_PRC_SP58_B
	4.2.36 VERIFY_AVAILABLE_FUNDS_SP59_B
	Figure 4-34. RETRIEVE_PRODUCT_PRC_SP58_B Diagram
	Figure 4-35. VERIFY_AVAILABLE_FUNDS_SP59_B Diagram...

	4.2.37 UPDATE_USER_PROFILE_SP60_B
	4.2.38 SUBMIT_SERVICE_AD_SP61_B
	Figure 4-36. UPDATE_USER_PROFILE_SP60_B Diagram
	Figure 4-37. SUBMIT_SERVICE_AD_SP61_B Diagram

